K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

A B C D E F

Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.

Đặt BC = a = const (hằng số)

Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:

BE + CF < BD + CD = BC (1)

Nếu E và F trùng D thì BE + CF = BC (2)

Từ (1) và (2) suy ra \(BE+CF\le BC=const\)

Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.

11 tháng 9 2019

tth làm không đúng rồi.

Ta có E là hình chiếu của B lên AD 

F là hình chiếu của CAD

=> \(BC=BD+DC\ge BE+CF\)

Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)

khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC 

Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC

24 tháng 1 2020

Theo giả thiết ta có: \(CF\perp AM\)nên \(\Delta MCF\)vuông tại F

Suy ra CF < MC (cạnh góc vuông bé hơn cạnh huyền) (1)

Tương tự ta có: BE < BM (2)

Từ (1) và (2) suy ra \(BE+CF< BM+MC=BC\)

Vậy \(BE+CF< BC\left(đpcm\right)\)

26 tháng 3 2021

ta có:

tam giác BEM vuông tại E \(\Rightarrow\) BM là cạnh lớn nhất trong tam giác BEM

\(\Rightarrow\):BM>BE

ta có: tam giác MFC vuông tại F suy ra MC là cạnh lớn nhất trong tam giác FMC

\(\Rightarrow\) CM>CF

từ 2 điều trên \(\Leftrightarrow\)

BM+CM>CF+BE

BC>CF+BE

18 tháng 3 2021

B C A H E Q F P D

a/

Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')

=> B,F,E,C cùng nawmg trên một đường tròn

b/

Xét đường tròn (O) ta có

sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)

Xét đường tròn (O') ta có

sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau

c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)

Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)

Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)

23 tháng 4 2019

bạn ơi cho mình hỏi bài này ở đề năm bao nhiêu của thành phố nào vậy bạn?????

2 tháng 5 2019

3. Xét tứ giác BFHD có:
HFB + HDB = 90º + 90º = 180º => BFHD là tứ giác nội tiếp. ⇒ FBH = FDH (1)
Tương tự có DHEC là tứ giác nội tiếp, ⇒HCE = HDE (2)

Mà BFEC là tứ giác nội tiếp nên FCE = FBE (3)
Từ (1) (2) (3)⇒ 2ABE = FDH + HDE = FDE
Vì BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC nên theo quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung EF, ta có: FIE = 2.FBE = 2.ABE
⇒FIE = FDE

4.Vì BFEC là tứ giác nội tiếp nên:
ABC = 180º – FEC = AEF => ΔAEF ~ ΔABC (g.g)2016-04-23_193155

Suy ra độ dài EF không đổi khi A chạy trên cung lớn BC của đường tròn (O)
Gọi K là giao điểm thứ 2 của ED và đường tròn đường kính BC
Theo tính chất góc ngoài: FDE = DKE + DEK
Theo ý 3 và quan hệ giữa góc ở tâm và góc nội tiếp cùng chắn cung, có FDE = FIE = 2.DKE

⇒DKE = DEK => ΔDEK cân tại D => DE = DK

Chu vi ΔDEF là P = DE + EF + FD = EF + FD + DK = EF + FK
Có FK ≤ BC ( dây cung – đường kính) => P ≤ EF + BC không đổi
Dâu bằng xảy ra khi và chỉ khi FK đi qua I ⇔ D trùng I ⇔ ΔABC cân tại A.
Vậy A là điểm chính giữa của cung lớn BC

12 tháng 10 2019

Vì BE ⊥ Ax tại E nên tam giác BEM vuông tại E ⇒ BM > BE (quan hệ đường xiên và đường vuông góc)

Vì CF  ⊥ Ax tại F nên tam giác CFM vuông tại F ⇒ CM > CF (quan hệ đường xiên và đường vuông góc)

Khi đó ta có: BM + CM > BE + CF

Mà BM + CM = BC (M thuộc BC)

Do đó: BC > BE + CF hay BE + CF < BC.

Chọn đáp án A

22 tháng 3 2022

Đáp án nào zị??