Giúp mình giải bài này với! Thứ 2 mình nộp rồi
Bài 1
a) (a+b)2 < 2(a2+b2)
b) Tìm giá trị lớn nhât( liên quan tới câu a)
S= căn(x-2) + căn(x+3) với x+y =6
Bài 2 Tìm gúa trị lớn nhất , giá trị nhỏ nhất của
A= căn(1-x) + căn(1+x)
Help me , please!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
Bài 5:
Xét ΔADC vuông tại D có DO là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}AD^2=AO\cdot AC\\DC^2=CO\cdot CA\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AO=7,2\left(cm\right)\\CO=12,8\left(cm\right)\end{matrix}\right.\)
Do \(\overline{2x9y1}\) là số chính phương \(\Rightarrow\overline{2x9y1}=k^2\)
\(\overline{2x9y1}\) có tận cùng bằng 1 \(\Rightarrow k\) tận cùng bằng 1 hoặc 9
Mặt khác \(20164< \overline{2x9y1}< 30276\Rightarrow142^2< \overline{2x9y1}< 174^2\)
\(\Rightarrow142^2< k^2< 174^2\)
\(\Rightarrow142< k< 174\)
Do k có tận cùng bằng 1 hoặc 9 \(\Rightarrow\) k chỉ có thể là 1 trong các số: 149, 151, 159, 161, 169, 171
Kiểm tra ta thấy chỉ có \(k=161\Rightarrow k^2=25921\) là có dạng thỏa mãn \(\overline{2x9y1}\)
Vậy \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
bạn à!
đề bài là giải phương trình trên nhá lúc đánh mình quên mất
Dãy này có dạng 7 + 5k (với k là số tự nhiên)
a/ số thứ 1000 là số 7 + 5×999 = 5002
b/ ta có 38264 - 7 = 38257 không chia hết cho 5
195841 - 7 = 195834 không chia hết cho 5
Vậy cả 2 số không thuộc dãy số trên
ĐK: \(x\ge\dfrac{5}{3}\)
Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)
\(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)
\(\Leftrightarrow6-x=4\sqrt{3x-5}\) ĐK: x≤6
\(\Leftrightarrow36-12x+x^2=48x-80\)
\(\Leftrightarrow x^2-60x+116=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)
So với điều kiện thì phương trình có nghiệm duy nhất là x = 2
\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)
Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)
Do đó (1) vô nghiệm
Vậy PT có nghiệm \(x=2\)