chứng minh 20092011+20112009 chia hết 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 20102011 - 20102010
A = 20102010 .( 2010 - 1)
A = 20102010.2009
2009 ⋮ 2009 ⇒ A = 20102010.2009 ⋮ 2009
Nó có chia hết à ???
Ta thấy 2009 chia 2010 dư -1
=> 2009 ^ 2008 chia 2010 dư 1 (1)
Lại có 2011 chia 2010 dư 1
=> 2011^2010 chia 2020 dư 1 (2)
Từ (1)(2) => 2009^2008-2011^2020 chia 2010 dư 2 (sai )
2009^2008+2011^2010 chia hết cho 2010 2009^2008+2011^2010
=2009^2008+2011^2010
=2009^2008+2011^2010+1-1
=(2009^2008+ 1) + (2011^2010– 1)
= (2009 + 1)(2009^2007- …) + (2011 – 1)(2011^2009 + …)
= 2010(2009^2008 - …) + 2010(2011^2009+ …) chia hết cho 2010
1. Ta có: A = 2^1+ 2^2 +2^3+2^4+....2^10
A= ( 2^1 + 2^2) + ( 2^3+2^4) +....( 2^9+ 2^10)
A= 3.( 2^1+2^3+2^5+...+2^1005)
Do 3 \(⋮\)3 => A\(⋮\)3
Ta có: A =.....
A= Ghép 3 số lại
A= 7. (2^1+ 2^4+...+2^670)
Do 7 \(⋮\)7 => A \(⋮\)7
2;3;4 đều ghép 2 hoặc 3 số như tke và phần trog ngoặc cx y hệt như tke, ko thay đổi
Duyệt nhanh....
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
\(2011\equiv1\left(mod2010\right)\Rightarrow2011^{2009}\equiv1\left(mod2010\right)\)
\(2009\equiv-1\left(mod2010\right)\Rightarrow2009^{2011}\equiv-1\left(mod2010\right)\)
\(\Rightarrow2009^{2011}+2011^{2009}\equiv0\left(mod2010\right)\Rightarrow2009^{2011}+2011^{2009}⋮2010\)
mod là sao