K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>2012|x-2011|-|x-2011|+(x-2011)^2+2013>0

=>2011|x-2011|+(x-2011)^2+2013>0(luôn đúng)

17 tháng 9 2018

a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)

\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)

\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)

\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\)    (1)

Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)

Nên biểu thức (1) xảy ra khi \(x+2013=0\)

\(x=-2013\)

b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\)  (2)

Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)

Nên biểu thức (2) xảy ra khi \(x-2011=0\)

\(x=2011\)

1 tháng 4 2017

Câu 1 bị sai đề bài.

Câu 2:

\(\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}=\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}\)

\(=1-\frac{1}{2012}+1-\frac{1}{2013}+1+\frac{1}{2011}+\frac{1}{2011}\)

Vì:

\(\frac{1}{2011}>\frac{1}{2012};\frac{1}{2011}>\frac{1}{2013}\Rightarrow\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}>0\)

\(\Rightarrow\)\(\frac{2012-1}{2012}+\frac{2013-1}{2013}+\frac{2011+1+1}{2011}>3\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2011}>3\)

5 tháng 4 2017

Tính 2 mũ76 - 2 mũ 74/ 2 mũ 78- 2 mũ 76

bài này khó lắm đó

1 tháng 1 2023

2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|

|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0

|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0

| x- 2011| .| x -2011|  - | x - 2011| = 0

| x - 2011|. { | x - 2011| - 1} = 0

\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)

Kết luận x \(\in\) { 2010; 2011; 2012}