4) Cho x,y > 0 ; x + y = 1 . Tìm min M = \(\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{x}{x+1}=1-\frac{1}{x+1}\)
\(\frac{y}{y+1}=1-\frac{y}{y+1}\)
\(\frac{z}{z+4}=1-\frac{4}{z+4}\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{4}{z+4}\right)\)
\(\le\left[3-\left(\frac{4}{x+y+2}+\frac{4}{z+4}\right)\right]\le\left(3-\frac{16}{x+y+z+6}\right)=3-\frac{16}{6}=\frac{1}{3}\)
Ta co: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có: \(\hept{\begin{cases}x^2-y+\frac{1}{4}=0\\y^2-x+\frac{1}{4}=0\end{cases}}\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
Vậy \(x=y=\frac{1}{2}\)
Ta có:\(x^2+4y+4=0;y^2+4z+4=0;z^2+4x+4=0\)
\(\Leftrightarrow\left(x^2+4y+4\right)+\left(y^2+4z+4\right)+\left(z^2+4x+4\right)=0\)
\(\Leftrightarrow x^2+4x+4+y^2+4y+4+z^2+4z+4=0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2=0\)
Mà\(\left(x+2\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z+2\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y+2=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\\z=-2\end{cases}\Leftrightarrow}x=y=z=-2}\)
Vậy\(x^{10}+y^{10}+z^{10}=x^{10}+x^{10}+x^{10}\)
\(=3\cdot x^{10}=3\cdot\left(-2\right)^{10}=3\cdot1024=3072\)
Đặt \(x=\sqrt{10}sin^2a\); \(y=\sqrt{10}cos^2a\)
(Lúc đó: \(x+y=\sqrt{10}\left(sin^2a+cos^2a\right)=\sqrt{10}\))
Lúc đó: \(K=\left(1+100sin^8a\right)\left(1+100cos^8a\right)\)
\(=10^4sin^8acos^8a+200sin^4acos^4a-400sin^2acos^2a+101\)
Đặt \(sin^2acos^2a=l\)
\(\Rightarrow K=f\left(l\right)=10^4l^4+200l^2-400l+101\)
\(\Rightarrow K_{min}=f\left(\frac{1}{5}\right)=45\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
=>\(\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
=>x^2+2xy+y^2-4xy>=0
=>(x-y)^2>=0(luôn đúng)
xl mình nhầm ạ, cho x,y,z > 0 . Tìm GTNN x^4+y^4 + z^4 với x+y+z=2
Liên tục sử dụng Bunhiacopxki dạng phân thức:
\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}\)
\(=\frac{\frac{\left(x+y+z\right)^4}{9}}{3}=\frac{2^4}{27}=\frac{16}{27}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)
\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)
Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)
=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)
Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)
Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1
\(M=\dfrac{1}{x^{2}+y^{2}}+\dfrac{1}{xy} \\=(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy})+\dfrac{1}{2xy}\\ \)
\(\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2.\left(\dfrac{x+y}{2}\right)^2}=\dfrac{4}{1^2}+\dfrac{1}{2.\left(\dfrac{1}{2}\right)^2}=6\)
Dấu "=" xảy ra<=>x=y=0,5.
\(M=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=6\)
\(\Rightarrow M_{min}=6\) khi \(x=y=\dfrac{1}{2}\)