Cho tam giác ABC cân tại A . Trên tia đối AC lấy điểm D sao cho DA=AC . Chứng minh tam giác BCD vuông
Giúp r mình like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều
b) Dùng kết quả câu a, ta có BC = CD = 2AC
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: Xét ΔACE vuông tại A có AC=AE
nên ΔACE vuông cân tại A
góc ABD=góc AEC=45 độ
=>BD//EC
Bạn tự vẽ hình nhé
Vì tam giác ABC cân tại A
=>AB=AC, góc ABC= góc ACB(1)
Vì AD=AC
mà AB=AC
=>AB=AD
Xét tam giác ABD có: AB=AD
=>Tam giác ABC cân tại A
=>góc ABD=góc ADB(2)
Từ (1) và (2)
=>góc ABC= góc ACB, góc ABD=góc ADB
=>góc ABC+góc ABD=góc ACB+góc ADB
=>góc DAC= góc ACD+góc ADC
Xét tam giác DAC có:
góc DAC+góc ACD+góc ADC=180 độ
mà góc DAC= góc ACD+góc ADC
=>góc DAC+góc DAC=180 độ
=>2.góc DAC=180 độ
=>góc DAC=90 độ
=>Tam giác BCD vuông tại B
=>ĐPCM