cho hình thanh ABCD có đáy nhỏ là AB, Gọi MNPQ lần lượt là trung điểm của AB AC CD BD
a)CMR:MNPQ là hbh
b)nếu từ giác ABCD là hình thang cân thì PM là phân giác của NPQ
c)hình thang ABCD cần thêm điều kiện gì để MNPQ là hình vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
a / hình bình hành
b/ AC=BD ; AB>CD ; AB<AC<CD;AB<BD<CD
c/hình vuông
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
MNPQ là hình thoi vì là hình bình hành có hai cạnh kề bằng nhau.
Ta có MN song song và bằng QP (vì cùng song song với AC và bằng 1/2 của AC theo tính chất đường trung bình của tam giác)
Vậy MNPQ là hình bình hành vì có 2 canh đối song song và bằng nhau.
mk chi lam dc y a thui
a
Do:
MQ là đường trung bình của tam giác ABD nên MQ//BD và MQ=BD/2 (1)
NP là đường trung bình của tam giác CBD nên NP//BD và NP=BD/2 (2)
Từ (1) và (2) suy ra điều phải chứng minh ( có 2 cặp cạnh đối song song và bằng nhau )
b
MNPQ là hình chữ nhật nên QM vuông góc với MN.
Khi đó AC vuông góc với BD.
Vậy hình thang ABCD cần thêm điều kiện AC vuông góc với BD thì MNPQ là hình chữ nhật.
xét tam giác ADC có Q là trung điểm của AD(gt)
P là trung điểm của DC (gt)
=> QP là đường trung bình của tam giác ADC
=> QP=AC/2, QP// AC (1)
xét tam giác ABC có M là trung điểm của AB (gt)
N là trung điểm của BC (gt)
=> NM là đường trung bình của tam giác ABC
=> NM = AC/2, NM // AC (2)
từ (1) và (2) => NM = QP, NM // QP => MNPQ là HBH(vì là tứ giác có 2 cạnh đối vừa // vừa = nhau)
b) ABCD là Hthang cân => \(\widehat{BAD}=\widehat{ABC}\), AD = BC (t/c Hthang cân)
AD = BC => AQ = BN
xét tam giác AQM và tam giác MBN
có AM=MB (gt)
\(\widehat{QAM}=\widehat{MBN}\)(cmt)
AQ = BN (cmt)
=> tam giác AQM = tam giác BNM(c-g-c)
=> QM=MN (2 cạnh tương ứng)
HBH MNPQ có QM = MN (cmt)
=> MNPQ là Hthoi (vì là HB có 2 cạnh kề = nhau)
MP là đường chéo => MP là tia phân giác của \(\widehat{QMN}\)(t/c Hthoi)
xem tren mang