cho tam giác ABC vuông tại A,M là trung điểm BC,từ M kẻ đường thẳng song song với AC,AB lần lượt cắt AB atij E,cắt AC tại F.chứng minh EFCB là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :
+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\) \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)
+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\) \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)
+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)
Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)
\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)
Ta có:
+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)
+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)
+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)
Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK
Mặt khác A, K, G thẳng hàng
=> A là trung điểm KG
Ta có hình vẽ:
Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé
a/ Xét tam giác AMB và tam giác AMC có:
AB = AC (GT)
BM = MC (GT)
AM : cạnh chung
=> tam giác AMB = tam giác AMC (c.c.c)
b/ Xét tam giác AEM và tam giác AFM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
AM : cạnh chung
\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)
Vậy tam giác AEM = tam giác AFM (g.c.g)
=> AE = AF (2 cạnh tương ứng)
c/ Xét tam giác EBM và tam giác FCM có:
\(\widehat{E}\)=\(\widehat{F}\)=900
BM = MC (GT)
\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)
Vậy tam giác EBM = tam giác FCM
(theo trường hợp cạnh huyền góc nhọn)
=> BE = FM (2 cạnh tương ứng) (1)
Ta có: EM: cạnh chung (2)
Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900
=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)
Từ (1),(2),(3) => tam giác BEM = tam giác EFM
=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> EF // BC
d/ Xét tam giác ABN và tam giác ACN có:
AB = AC (GT)
\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)
AN: chung
=> tam giác ABN = tam giác ACN (c.g.c)
BN = CN ( 2 cạnh tương ứng)
Xét tam giác BMN và tam giác CMN có:
MN: chung
BM = MC (GT)
BN = CN (đã chứng minh)
=> tam giác BMN = tam giác CMN (c.c.c)
-Ta có: tam giác ABM = tam giác ACM (câu a)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)
=> góc AMB = góc AMC = 900
-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)
=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)
mà \(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)
=> góc BMN = góc CMN = 900
Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800
hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800
hay A,M,N thẳng hàng
xét ▲ABC có EB=EA;FA=FC≫EF la duờng trung binh
≫EF//BC
≫tứ giác EFBC là hinh thang
ME//AC mà MB=MC ≫EB=EA
cmtt,FA=FC