K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2018

xét ▲ABC có EB=EA;FA=FC≫EF la duờng trung binh 

≫EF//BC

≫tứ giác EFBC là hinh thang

7 tháng 12 2018

ME//AC mà MB=MC ≫EB=EA

cmtt,FA=FC

7 tháng 12 2015

bạn vẽ hình đi mình làm cho

17 tháng 2 2020

A B C D E K G a

Lần lượt áp dụng định lý Talet trong các \(\Delta BCD,\Delta ABC,\Delta BEC\) ta có :

+) \(\Delta BCD:\hept{\begin{cases}KA//BC\\K\in DC,A\in BD\end{cases}}\)  \(\Rightarrow\frac{AK}{BC}=\frac{AD}{BD}\) (1)

+) \(\Delta ABC:\hept{\begin{cases}DE//BC\\D\in AB,E\in AC\end{cases}}\)  \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) (2)

+) \(\Delta BEC:\hept{\begin{cases}AG//BC\\A\in EC,G\in BE\end{cases}}\) \(\Rightarrow\frac{AG}{BC}=\frac{AE}{EC}\) (3)

Từ (1), (2) và (3) \(\Rightarrow\frac{AK}{BC}=\frac{AG}{BC}\) \(\Rightarrow AK=AG\) mà\(A\in KG\left(A\in a\right)\)

\(\Rightarrow A\) là trung điểm của \(KG\) (đpcm)

17 tháng 2 2020

A B C D E K G

Ta có: 

+) AG // BC => \(\frac{AG}{BC}=\frac{AE}{AC}\)

+) AK//BC => \(\frac{AK}{BC}=\frac{AD}{BD}\)

+) DE//AC => \(\frac{AD}{DB}=\frac{AE}{EC}\)

Từ 3 điều trên => \(\frac{AG}{BC}=\frac{AK}{BC}\)=> AG = AK 

Mặt khác A, K, G thẳng hàng

=> A là trung điểm KG

21 tháng 4 2017

a) VÌ DE//BC 

SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE

b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)

\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC