Cm rằn tổng lập phương của 1 số nguyên vs 11 lần số đó là 1 số chia hết cho 6 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
Gọi số nguyên đó là a. Ta cần chứng minh
a3+11a⋮6a3+11a⋮6
Xét: a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6a3+11a=a(a2+11)=a(a2−1+12)=a(a2−1)+12a=a(a+1)(a−1)+12a⋮6
Vậy ta có đpcm.
Lời giải:
Xét biểu thức A=n3−13nA=n3−13n. Ta cần cm A⋮6A⋮6
Thật vậy: A=n3−13n=n3−n−12n=n(n2−1)−12nA=n3−13n=n3−n−12n=n(n2−1)−12n
A=n(n−1)(n+1)−12nA=n(n−1)(n+1)−12n
Vì n,n−1n,n−1 là hai số tự nhiên liên tiếp nên tích n(n−1)⋮2n(n−1)⋮2
⇒n(n−1)(n+1)⋮3⇒n(n−1)(n+1)⋮3
Vì n−1,n,n+1n−1,n,n+1 là ba số tự nhiên liên tiếp nên tích n(n−1)(n+1)⋮3n(n−1)(n+1)⋮3
Kết hợp với (2,3) nguyên tố cùng nhau, do đó: n(n−1)(n+1)⋮6n(n−1)(n+1)⋮6
Mà 12n⋮612n⋮6
⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6⇒A=n(n−1)(n+1)−12n⋮6⇔n3−13n⋮6
Ta có đpcm.
Gọi 2 số đó lần lượt là a ; b (a,b \(\inℤ\))
Xét hiệu (a3 + b3) - (a + b)
= (a3 - a) + (b3 - b)
= a(a2 - 1) + b(b2 - 1)
= (a - 1)a(a + 1) + (b - 1)b(b + 1)
Vì a ; b \(\inℤ\)=> (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp
=> Tồn tại 1 số chia hết cho 2 và 3 , mà (2,3) = 1
=> (a - 1)a(a + 1) \(⋮\)6
Tương tự (b - 1)b(b + 1) \(⋮\)6
=> (a3 + b3) - (a + b) \(⋮\)6
=> ĐPCM