Cho A=ax^3+bx^2+cx+d biết -a+b-c+d=0. Chứng minh: A chia hết cho x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý Bézout thì số dư khi chia đa thức A(x) cho nhị thức x + 1 là: \(r=A\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
Vậy A(x) chia hết cho x + 1 (đpcm)
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
Có \(P\left(x\right)⋮5\)với mọi x
=> \(P\left(0\right)=d⋮5\)
\(P\left(1\right)=a+b+c+d⋮5\)
\(P\left(-1\right)=-a+b-c+d⋮5\)
\(P\left(2\right)=8a+4b+2c+d⋮5\)
\(P\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\)và \(-a+b-c⋮5\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5\)
Mà 2 là SNT và b nguyên
=> \(b⋮5\)
=> \(a+c⋮5\); \(-a-c⋮5\); \(8a+2c⋮5\); \(-8a-2c⋮5\)
=> \(2\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6a⋮5\)
mà 6 không chia hết cho 5
=> \(a⋮5\)
=> \(b⋮5\)
quá đơn giản với BỐ
Ta có:
\(P\left(0\right)=d\)
=> d chia hết cho 5
\(P\left(1\right)=a+b+c+d\)
=> a + b + c chia hết cho 5 (1)
\(P\left(-1\right)=-a+b-c+d\) chia hết cho 5 (2)
Cộng (1) và (2) ta được:
2b + 2d chia hết cho 5
Mà d chia hết cho 5 => 2d chia hết cho 5
=> 2b chia hết cho 5
=> b chia hết cho 5
\(P\left(2\right)=8a+4b+2c+d\) chia hết cho 5
=> 8a + 2c chia hết cho 5 ( Vì 4b + d chia hết cho 5 )
=> 6a + 2a + 2c chia hết cho 5
=> 6a + 2( a + c ) chia hết cho 5
=> 2( a + c ) chia hết cho 5 ( Vì a + b + c chia hết cho 5, b chia hết cho 5 )
=> 6a chia hết cho 5
=> a chia hết cho 5
=> c chia hết cho 5
Vậy a ; b ; c ; d chia hết cho 5
Thay x = -1 vào A, ta có:
\(A=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
\(A\left(-1\right)=0\) nên A chia hết cho x + 1