OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác nhọn ABC có đường cao AD, BE và CF cắt nhau tại H
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cjo tam giác nhọn ABC có đường cao AH, BE và CF cắt nhau tại H.
Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\) VÀ \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\)
Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H.
a. Tính \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\)
b. Cm: BH*BE+CH*CF=BC^2
c. Cm: H cách đều 3 cạnh của tam giác DEF.
Giúp câu c là đc
cho tam giác ABC nhọn các đường cao AD, BE, CF cắt nhau tại H chứng minh rằng \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
Đây nhé
Cho tam giác ABC nhọn có: 3 đường cao AD, BE, CF cắt nhau tại H
Chứng minh: \(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}\) không đổi
Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE cắt nhau tại H
d. CM \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
cho tam giác ABC, D thuộc BC , E thuộc AC, F thuộc AB ; AD,BE,CF là 3 đường cao cắt nhau tại H. Chứng minh: a)\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=2\)
b)\(\frac{AH}{HD}+\frac{BH}{HE}+\frac{CH}{HF}\ge6\)
MIK CẦN GẤP
k minh minh giai
giúp mik vs
hứa sẽ k nếu đúng và đầy đủ
Cho tam giác ABC có 3 góc nhọn nội tiếp đường trong (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gọi G là trọng tâm của tam giác ABC.
a. Chứng minh \(S_{AHG} = 2S_{AGO}\)
b. Chứng minh \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)
Cho tam giác ABC có 3 góc nhọn, đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a, DB.DC = DH.DA
b, tam giác AEF đồng dạng tam giác ABC
c, \(\frac{HD}{AD}\)+ \(\frac{HE}{BE}\)+ \(\frac{HF}{CF}\)= 1
d, H là giao điểm các đường phân giác của tam giác DEF
cho tam giác ABC ( có 3 góc nhọn) nội tiếp đường tròn(O;R). Các đường cao AD,BE,CF cắt nhau tại H. Kéo dài AO cắt đường tròn tại K. Gôi G là trọng tâm của ABC
a,Chứng minh SAHG=2SAGO
b,Chứng minh \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\)