🔺ABC vuông cân tại A có AD là trung tuyến trên DC lấy H. Hạ BE và CF vuông góc với AH
a)C/m BE=AF
b)Gọi G là giao điểm AD và BE
C/m GH//AC
c)C/m 🔺DEF vuông cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABE và tam giác CAF có:
\(\widehat{AEB}=\widehat{CFA}\left(=90^o\right)\)
AB = CA
\(\widehat{BAE}=\widehat{ACF}\) (Cùng phụ với góc \(\widehat{FAC}\) )
\(\Rightarrow\Delta ABE=\Delta CAF\) (Cạnh huyền - góc nhọn)
\(\Rightarrow BE=AF\)
b) Do tam giác ABC vuông cân nên trung tuyến AD đồng thời là đường cao.
Xét tam giác BAH có BE và AD là các đường cao nên G là trực tâm
Vậy thì \(HG\perp AB\)
Lại có \(AC\perp AB\) nên GH // AC.
c) Do \(\Delta ABE=\Delta CAF\Rightarrow\widehat{ABE}=\widehat{CAF}\Rightarrow\widehat{DBE}=\widehat{DAF}\)
(Cùng bằng hiệu của 45o trừ đi hai góc trên)
Tam giác ABC vuông cân nê DB = DA = DC
Vậy thì \(\Delta BDE=\Delta ADF\left(c-g-c\right)\)
\(\Rightarrow DE=DF;\widehat{BDE}=\widehat{ADF}\)
\(\Rightarrow\widehat{GDE}=\widehat{HDF}\Rightarrow\widehat{GDH}=\widehat{EDF}\Rightarrow\widehat{EDF}=90^o\)
Suy ra tam giác DEF vuông cân tại D.
d) Ta thấy ngay \(\Delta GDE=\Delta HDF\left(g-c-g\right)\)
\(\Rightarrow GD=HD\)
Kẻ GM // EH (M thuộc DH)
Ta có ngay GM < EH
Lại có GD < GM (Quan hệ đường vuông góc đường xiên)
nên DH < HE
a) Vì tam giác ABC cân tại A =>AB=AC và góc ABC=góc ACB hay góc HBM= góc KCM
Vì M là trung điểm của BC =>BM=MC
Xét tam giác ABM và tam giác ACM có
AB=AC
BM=CM
Chung cạnh AM
Do đó tam giac ABM = tam giác ACM (c.c.c)
b) Vì MH vuông góc với AB =>góc BHM=90
MK vuông góc với AC =>góc MKC=90
Do đó góc BHM = góc MKC =90
Xét tam giac BHM và tam giác CKM có
góc BHM= góc CKM=90
BM=CM
góc HBM= góc KCM
Do đó tam giac BHM = tam giac CKM (cạnh huyền-góc nhọn)
=>BH=CK (hai cạnh tương ứng)
c)Vì BP vuông góc với AC,MK vuông góc với AC
=>BP song song với MK
=>góc PBM= góc KMC ( hai góc đồng vị)
Vì tam giác BHM = tam giác CKM => góc BMH = góc CMK
Do đó góc PBM = góc HMB hay góc IBM = góc IMB
Trong tam giác BIM có góc IBM = góc IMB => tam giác BIM cân
Hình như đường trung tuyến của 1 tam giác cân vuông góc với cạnh đáy hay sao ý
a/ Ta có :
\(\widehat{BAE}+\widehat{FAC}=90^0\) (2 góc phụ nhau) \(\left(1\right)\)
b/ Xét \(\Delta AEB\) vuông tại E
\(\Leftrightarrow\widehat{ABE}+\widehat{BAE}=90^0\) (2 góc phụ nhau) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\widehat{FAC}=\widehat{ABE}\)
Xét \(\Delta ABE;\Delta AFC\) có :
\(\left\{{}\begin{matrix}\widehat{BEA}=\widehat{AFC}=90^0\\AB=AC\\\widehat{FAC}=\widehat{ABE}\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABE=\Delta AFC\left(ch-gn\right)\)
\(\Leftrightarrow BE=AF\)
b/