K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 11 2018

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=12\\\left(x-1\right)^2+\left(y-2\right)^2=25\end{matrix}\right.\) \(\Rightarrow\) đặt \(\left\{{}\begin{matrix}x-1=a\\y-2=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}ab=12\\a^2+b^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{12}{a}\\a^2+\dfrac{144}{a^2}=25\end{matrix}\right.\) \(\Leftrightarrow a^4-25a^2+144=0\Rightarrow\left[{}\begin{matrix}a^2=16\\a^2=9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=4\Rightarrow b=3\\a=-4\Rightarrow b=-3\\a=3\Rightarrow b=4\\a=-3\Rightarrow b=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5;y=5\\x=-3;y=-1\\x=4;y=6\\x=-2;y=-2\end{matrix}\right.\)

Hệ đã cho có 4 cặp nghiệm \(\left(x;y\right)=\left(5;5\right);\left(-3;-1\right);\left(4;6\right);\left(-2;-2\right)\)

29 tháng 11 2018

cảm on bạn nhiều nha

NV
13 tháng 2 2020

ĐKXĐ: \(xy\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y^2-4y+2\right)=-y\\\frac{1}{x}\left(y+\frac{1}{y}\right)=3-\frac{1}{y^2}\end{matrix}\right.\)

Do các vế của 2 pt đều khác 0, nhân vế với vế:

\(\left(y+\frac{1}{y}\right)\left(y^2-4y+2\right)=-y\left(3-\frac{1}{y^2}\right)\)

\(\Leftrightarrow y^3-4y^2+6y-4+\frac{1}{y}=0\)

\(\Leftrightarrow y^4-4y^3+6y^2-4y+1=0\)

Chia 2 vế của pt cho \(y^2\) :

\(y^2+\frac{1}{y^2}-4\left(y+\frac{1}{y}\right)+6=0\)

Đặt \(y+\frac{1}{y}=t\Rightarrow y^2+\frac{1}{y^2}=t^2-2\)

\(\Rightarrow t^2-4t+4=0\Rightarrow t=2\Rightarrow y+\frac{1}{y}=2\Rightarrow y=1\)

b/ ĐKXĐ:

Đặt \(\left\{{}\begin{matrix}x^2+y^2-1=a\\\frac{y}{x}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+4b=21\\\frac{3}{a}+\frac{2}{b}=1\end{matrix}\right.\)

Một hệ pt hết sức bình thường, chắc bạn giải ngon lành :D

13 tháng 2 2020

Phạm Thị Diệu Huyền, Vũ Minh Tuấn, Trên con đường thành công không có dấu chân của kẻ lười biếng, Nguyễn Lê Phước Thịnh, Phạm Minh Quang, Phạm Lan Hương, Mysterious Person, Trần Thanh Phương, hellokoko,

@tth_new, @Nguyễn Việt Lâm, @Akai Haruma

Giúp em với ạ! Cần gấp lắm ạ! Thanks!

23 tháng 11 2018

\(HPt\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2+2xy+2=8y\left(1\right)\\y\left(x+y\right)^2=2x^2+7y+2\end{matrix}\right.\)

Cộng lại:\(2y\left(x+y\right)+y\left(x+y\right)^2=15y\)

y không thể là 0 , bởi nếu y=0 thì phương trình (1) vô nghiệm.

\(\Rightarrow\left(x+y\right)^2+2\left(x+y\right)=15\Leftrightarrow\left[{}\begin{matrix}x+y=3\\x+y=-5\end{matrix}\right.\)

Nếu x+y=3, thế vào (1):\(x^2+\left(3-x\right).3+1=4\left(3-x\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)=> (x,y)...

Nếu x+y=-3 , tương tự...

NV
24 tháng 8 2021

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(x^2-x\right)+1+4\left(y^2-2y\right)+4=10\\\left(x^2-x\right)\left(y^2-2y\right)=-\dfrac{3}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2-x=u\\y^2-2y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4u+1+4v+4=10\\uv=-\dfrac{3}{2}\end{matrix}\right.\)

Chắc em tự giải được hệ này, chỉ cần thế là xong

5 tháng 12 2021

2x + y = 1 <=> y = 1 - 2x

Thế vào pt còn lại thì:

x^2 + (1 - 2x)^2 - x(1 - 2x) = 3

<=> x^2 + 4x^2 - 4x + 1 - x + 2x^2 - 3 = 0

<=> 7x^2 - 5x - 2 = 0

<=> (x - 1)(7x + 2) = 0

<=> x = 1 hoặc x = -2/7

Với x = 1 <=> y = 1 - 2.1 = -1

Với x = -2/7 <=> y = 1 - 2.(-2/7) = 11/7

2 tháng 12 2018
https://i.imgur.com/yw2PEGF.gif
25 tháng 11 2023

a:

ĐKXĐ: y+1>=0

=>y>=-1

 \(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}+7=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left(x^2-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4\left(x^2-2x\right)+2\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7\left(x^2-2x\right)=-7\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-2x=-1\\3\cdot\left(-1\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x^2-2x+1=0\\2\sqrt{y+1}=-3+7=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\sqrt{y+1}=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1=0\\y+1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\left(nhận\right)\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\sqrt{4x^2-8x+4}+5\sqrt{y^2+4y+4}=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\2\cdot\sqrt{\left(2x-2\right)^2}+5\cdot\sqrt{\left(y+2\right)^2}=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5\left|x-1\right|-3\left|y+2\right|=7\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}20\left|x-1\right|-12\left|y+2\right|=28\\20\left|x-1\right|+25\left|y+2\right|=65\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-37\left|y+2\right|=-37\\4\left|x-1\right|+5\left|y+2\right|=13\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left|y+2\right|=1\\4\left|x-1\right|=13-5=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|y+2\right|=1\\\left|x-1\right|=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-1\in\left\{2;-2\right\}\\y+2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;-1\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)

c: ĐKXĐ: \(\left\{{}\begin{matrix}x< >-1\\y< >-4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3x+3-3}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3-\dfrac{3}{x+1}-\dfrac{2}{y+4}=4\\2-\dfrac{2}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{x+1}+\dfrac{2}{y+4}=3-4=-1\\\dfrac{2}{x+1}+\dfrac{5}{y+4}=2-9=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{6}{x+1}+\dfrac{4}{y+4}=-2\\\dfrac{6}{x+1}+\dfrac{15}{y+4}=-21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-11}{y+4}=19\\\dfrac{3}{x+1}+\dfrac{2}{y+4}=-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y+4=-\dfrac{11}{19}\\\dfrac{3}{x+1}+2:\dfrac{-11}{19}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{11}{19}-4=-\dfrac{87}{19}\\\dfrac{3}{x+1}=-1-2:\dfrac{-11}{19}=-1+2\cdot\dfrac{19}{11}=\dfrac{27}{11}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x+1=\dfrac{11}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{87}{19}\\x=\dfrac{2}{9}\end{matrix}\right.\)(nhận)

d:

ĐKXĐ: x<>1 và y<>-2

\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}+\dfrac{3y}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\dfrac{x-1+2}{x-1}+\dfrac{3y+6-6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1+\dfrac{2}{x-1}+3-\dfrac{6}{y+2}=7\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x-1}-\dfrac{6}{y+2}=7-4=3\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{y+2}=-1\\\dfrac{2}{x-1}-\dfrac{5}{y+2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+2=1\\\dfrac{2}{x-1}-5=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-1\\\dfrac{2}{x-1}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x-1=\dfrac{2}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=\dfrac{11}{9}\end{matrix}\right.\left(nhận\right)\)

28 tháng 3 2021

a) \(\left\{{}\begin{matrix}2x^2-5xy-y^2=1\\y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=1\end{matrix}\right.\)

ĐKXĐ:...

\(\Rightarrow y\left(\sqrt{xy-2y^2}+\sqrt{4y^2-xy}\right)=2x^2-5xy-y^2\)

Từ giả thiết dễ thấy \(y\ne0\), chia cả 2 vế cho \(y^2\) ta được:

\(\dfrac{\sqrt{xy-2y^2}+\sqrt{4y^2-xy}}{y}=\dfrac{2x^2-5xy-y^2}{y^2}\)

\(\Leftrightarrow\sqrt{\dfrac{xy-2y^2}{y^2}}+\sqrt{\dfrac{4y^2-xy}{y^2}}=2\left(\dfrac{x}{y}\right)^2-\dfrac{5x}{y}-1\)

\(\Leftrightarrow\sqrt{\dfrac{x}{y}-2}+\sqrt{4-\dfrac{x}{y}}=2\left(\dfrac{x}{y}\right)^2-5\dfrac{x}{y}-1\)

Đặt \(\dfrac{x}{y}=t\) \(\left(2\le t\le4\right)\)

\(\Leftrightarrow\sqrt{t-2}+\sqrt{4-t}=2t^2-5t-1\)

\(\Leftrightarrow\sqrt{t-2}-1+\sqrt{4-t}-1=2t^2-5t-3\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1\right)=\dfrac{t-3}{\sqrt{t-2}+1}+\dfrac{3-t}{\sqrt{4-t}+1}\)

\(\Leftrightarrow\left(t-3\right)\left(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}\right)=0\)

Xét \(2t+1-\dfrac{1}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}=2t+\dfrac{\sqrt{t-2}}{\sqrt{t-2}+1}+\dfrac{1}{\sqrt{4-t}+1}>0\forall t\)

\(\Rightarrow t-3=0\)

\(\Leftrightarrow t=3\)

\(\Leftrightarrow\dfrac{x}{y}=3\Leftrightarrow x=3y\)

Thế vào phương trình \(\left(1\right):2\cdot9y^2-5y\cdot3y-y^2-1=0\)

\(\Leftrightarrow2y^2-1=0\)

\(\Leftrightarrow y=\dfrac{1}{\sqrt{2}}\) do \(y>0\)

\(\Leftrightarrow x=\dfrac{3}{\sqrt{2}}\)

Vậy tập nghiệm của phương trình \(\left(x;y\right)=\left(\dfrac{3}{\sqrt{2}};\dfrac{1}{\sqrt{2}}\right)\)

b) \(\left\{{}\begin{matrix}x^3+1=2\left(x^2-x+y\right)\\y^3+1=2\left(y^2-y+x\right)\end{matrix}\right.\)

Trừ theo vế 2 phương trình ta được:

\(x^3-y^3=2\left(x^2-y^2-2x+2y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-2\left(x-y\right)\left(x+y\right)+4\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-2\left(x+y\right)+4\right)=0\)

Xét phương trình \(x^2+x\left(y-2\right)+y^2-2y+4=0\)

\(\Delta_x=\left(y-2\right)^2-4\left(y^2-2y+4\right)=-3y^2+4y-8< 0\) nên phương trình vô nghiệm.

Do đó \(x=y\)

Thế vào phương trình \(\left(1\right):x^3+1=2x^2\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy...