K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.

Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)

\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)

\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)

Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)

Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)

28 tháng 11 2018

chỗ 1/A bạn thay bằng 1/H nhé.

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

27 tháng 11 2018

@Trần Trung Nguyên

30 tháng 11 2018

H= \(\dfrac{x}{x\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2}=\dfrac{1}{\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2}\)

để H max thì \(\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2\) min

Áp dụng BĐT cô si cho 2 số ko âm ta có

\(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{2018}{\sqrt{x}}}=2\sqrt{2018}\)

=>\(\left(\sqrt{x}+\dfrac{2018}{\sqrt{x}}\right)^2\ge8072\)

H max= \(\dfrac{1}{8072}\)

Dấu "=" xảy ra khi

\(\sqrt{x}=\dfrac{2018}{\sqrt{x}}\Rightarrow x=2018\)

Vậy ....

21 tháng 6 2023

`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`

Ta cần tìm `max(5/(sqrtx-2))`

Nếu `0<=x<4` thì `5/(sqrtx-2)<0`

Nếu `x>4` thì `5/(sqrtx-2)>0`

Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`

`=>sqrtx-2>=sqrt5-2`

`=>5/(sqrtx-2)<=5/(sqrt5-2)`

`=>C<=1+5/(sqrt5-2)=11+sqrt5`

Vậy `C_(max)=11+sqrt5<=>x=5`

giúp em với

 

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

23 tháng 10 2017

 Giá trị lớn nhất của A sẽ đạt khi mẫu của phần số A nhỏ nhất . 

I x - 2017 I có giá trị nhỏ nhất khi x = 2017 

Khi đó I x - 2017 I + 2 = 2

A = 4032 / 2 = 2016

Vậy để biểu thức A đạt giá trị lớn nhất thì x = 2017 

GTLN A = 2016

1 tháng 11 2017

giải giúp tôi

|2x+1|+|x+8|=4x

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull