Giải phương trình : \(x^8-2x^4+x^2-2x+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.
a: =>3x=3
=>x=1
b: =>12x-2(5x-1)=3(8-3x)
=>12x-10x+2=24-9x
=>2x+2=24-9x
=>11x=22
=>x=2
c: =>2x-3(2x+1)=x-6x
=>-5x=2x-6x-3=-4x-3
=>-x=-3
=>x=3
d: =>2x-5=0 hoặc x+3=0
=>x=5/2 hoặc x=-3
e: =>x+2=0
=>x=-2
\(-x^4-2x^2+8=0\\ \Leftrightarrow x^4+2x^2-8=0\\ \Leftrightarrow\left(x^4-2x^2\right)+\left(4x^2-8\right)=0\\ \Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\\ \Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=-4\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
tổng các hệ số =0 nên có 1 nghiệm là 1 còn mấy cái sau đều là số vô tỷ nói thẳng là ko có nghiệm hữu tỉ
1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+6x-6x+18=0\)
\(\Leftrightarrow2x^2+18=0\left(loại\right)\)
2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
4: Ta có: \(2x\left(x-5\right)-3x+15=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
5: Ta có: \(3x\left(x+4\right)-2x-8=0\)
\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)
\(\Leftrightarrow2x-6=0\)
hay x=3
\(x^3-2\sqrt{2}x^2+6x-4\sqrt{2}=0\)
\(\Leftrightarrow\left(x^3-\sqrt{2}x^2+4x\right)-\left(\sqrt{2}x^2+2x-4\sqrt{2}\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}x+4\right)-\sqrt{2}\left(x-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x^2-\sqrt{2}x+4\right)=0\)
\(\Leftrightarrow x=\sqrt{2}\)
Dễ quá nè !!!
pt <=> (x^8-2x^4+1)+(x^2-2x+1)=0
<=> (x^4-1)^2+(x-1)^2=0
Có (x^4-1)^2 và (x-1)^2 >=0 với mọi x
Mà tổng lại =0
=> ''='' xảy ra <=> x^4-1=0 và x-1=0
<=> x=1
Vậy x=1.
\(x^8-2x^4+x^2-2x+2=0\)
Phân tích \(x^8-2x^4+x^2-2x+2\)thành nhân tử như sau:
\(\left(x-1\right)^2\left(x^6+2x^5+3x^4+4x^3+3x^2+2x+2\right)\)(Dài vãi, mk ko làm ra)
\(pt\Leftrightarrow\left(x-1\right)^2\left(x^6+2x^5+3x^4+4x^3+3x^2+2x+2\right)=0\)
Dễ c/m: \(\left(x^6+2x^5+3x^4+4x^3+3x^2+2x+2\right)\ne0\)
\(\Rightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(\dfrac{1}{x+2}+\dfrac{6x+12}{x^3+8}-\dfrac{7}{x^2-2x+4}=0\) \(\left(đk:x\ne-2\right)\)
\(\Leftrightarrow\dfrac{x^2-2x+4+6x+12-7\left(x+2\right)}{x^3+8}=0\)
\(\Leftrightarrow\dfrac{x^2-3x+2}{x^3+8}=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)(TM)
Vậy ...
dk : x khac -2
\(\Rightarrow x^2-2x+4+6x+12-7\left(x+2\right)=0\)
\(\Leftrightarrow x^2+4x+16-7x-14=0\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)
<=> (x^8-2x^4+1)+(x^2-2x+1)=0
<=>(x^4-1)^2+(x-1)^2=0
<=>\(\hept{\begin{cases}x^4-1=0\\x-1=0\end{cases}}\) <=> x=1
Chúc bạn học tốt :">
\(x^8-2x^4+x^2-2x+2=0\)
\(\left[\left(x^4\right)^2-2.x^4.1+1^2\right]+\left(x^2-2x+1\right)=0\)
\(\left(x^4-1\right)^2+\left(x-1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x^4-1\right)^2\ge0\forall x\\\left(x-1\right)^2\ge0\forall x\end{cases}}\Rightarrow\left(x^4-1\right)^2+\left(x-1\right)^2\ge0\forall x\)
Mà \(\left(x^4-1\right)^2+\left(x-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x^4-1\right)^2=0\\\left(x-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4-1=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=1\end{cases}\Rightarrow}x=1}\)
Vậy \(x=1\)