Chứng minh : Tứ giác có giao điểm các đường chéo trùng với giao điểm các đoạn thẳng nối trung điểm các cạnh đối diện thì tứ giác đó là hình bình hành.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
9 tháng 10 2018
Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )