Chứng minh rằng Với các số tự nhiên a,b,c thoả mãn : a3+b3+c3 chia hết cho 6 thì a+b+c chia hết 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).
Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).
Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).
Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).
Vậy abc chia hết cho 14.
Ta có \(P=a^3+b^3+c^3\)
\(P=\left(a^3-a\right)+\left(b^3-7b\right)+\left(2c^3-2024c\right)+a+7b+2024c-c^3\)
\(P=a\left(a^2-1\right)+b\left(b^2-7\right)+2c\left(c^2-1012\right)\) ( do \(a+7b+2024c=c^3\))
Dễ thấy \(a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của 3 số nguyên liên tiếp nên chia hết cho 6.
Xét \(f\left(b\right)=b\left(b^2-7\right)\). Dễ thấy \(f\left(b\right)\) chẵn với mọi số nguyên \(b\). Nếu \(b⋮3\Rightarrow f\left(b\right)⋮3\). Nếu \(b⋮̸3\) thì \(b^2\equiv1\left[3\right]\) \(\Rightarrow b^2-7⋮3\) \(\Rightarrow f\left(b\right)⋮3\). Vậy \(f\left(b\right)⋮3\) với mọi số nguyên \(b\). Vậy thì \(f\left(b\right)⋮6\)
Xét \(g\left(c\right)=2c\left(c^2-1012\right)\). Cũng dễ thấy \(g\left(c\right)\) chẵn. Nếu \(c⋮3\) thì \(g\left(c\right)⋮3\). Nếu \(c⋮̸3\) thì \(c^2\equiv1\left[3\right]\) \(\Rightarrow c^2-1012⋮3\) \(\Rightarrow g\left(c\right)⋮3\). Thế thì \(g\left(c\right)⋮6\) với mọi số nguyên \(c\)
Từ đó \(P=a\left(a^2-1\right)+f\left(b\right)+g\left(c\right)⋮6\), đpcm.
Giả sử a - b chia hết cho 6, tức là tồn tại số nguyên k sao cho a - b = 6k. (1)
a) Chứng minh a + 5b chia hết cho 6:
Ta có:
a + 5b = (a - b) + 6b.
Từ (1), ta thay thế a - b = 6k vào biểu thức trên:
a + 5b = 6k + 6b = 6(k + b).
Vì k + b là một số nguyên, nên a + 5b chia hết cho 6.
b) Chứng minh a - 13b chia hết cho 6:
Tương tự như trường hợp trên, ta có:
a - 13b = (a - b) - 12b.
Thay thế a - b = 6k (theo (1)) vào biểu thức trên:
a - 13b = 6k - 12b = 6(k - 2b).
Vì k - 2b là một số nguyên, nên a - 13b chia hết cho 6.
a, \(a+5b=\left(a-b\right)+6b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\6b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)+6b⋮6\Rightarrow a+5b⋮6\)
b, \(a-13b=\left(a-b\right)-12b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\-12b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)-12b⋮6\Rightarrow a-13b⋮6\)
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
a3+b3+c3=(a+b+c)3-3(a+b)(a+c)(b+c)
Vì a3+b3+c3 \(⋮\)6 nên [(a+b+c)3-3(a+b)(a+c)(b+c)] \(⋮\)6
Mà trong 3(a+b)(a+c)(b+c) luôn có ít nhất 1 số chẵn ( xét các trường hợp a,b,c lần lượt là : lẻ, lẻ, lẻ; chẵn,chẵn, chẵn; chẵn, lẻ, lẻ; chẵn, chẵn, lẻ;chẵn lẻ chẵn; lẻ chẵn lẻ; lẻ chẵn chẵn; lẻ lẻ chẵn..[tìm thêm ])
nên 3(a+b)(a+c)(b+c)\(⋮\)6
=> (a+b+c)3 phải chia hết cho 6
Lại có a,b,c là các số tự nhiên nên suy ra a+b+c phải chia hết cho 6.
a3+b3+c3=(a+b+c)(a^2+b^2+c^2−ab−bc−ac)+3abc
a^3+b^3+c^3=(a+b+c)(a^2+b2+c^2−ab−bc−ac)+3abc
=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc=(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc
=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc=(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc
*Nếu a+b+c⋮3⇒a3+b3+c3⋮3a+b+c⋮3⇒a3+b3+c3⋮3
*Nếu a3+b3+c3⋮3⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3a3+b3+c3⋮3
⇒(a+b+c)[(a+b+c)2−3(ab+bc+ca)]⋮3
⇒a+b+c⋮3
=>đpcm
Mk nhác ghi mũ lắm thông cảm nha Vd; a2=a^2