Tìm giá trị lớn nhất của biểu thức:
M=-x2+2xy-4y+2x+10y-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trần Việt Hoàng !!! Em xem lại đề nhé! Cô nghĩ là M= - x^2+2xy-4y^2+2x+10y-8
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=10-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)\)
\(=10-\left(x-y-1\right)^2-3\left(y-2\right)^2\le10\)
Vậy \(MaxA=10\), đạt được khi và chỉ khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Lời giải:
$-A=x^2-2xy+4y^2-2x-10y+3$
$=(x^2-2xy+y^2)+3y^2-2x-10y+3$
$=(x-y)^2-2(x-y)+3y^2-12y+3$
$=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-10$
$=(x-y+1)^2+3(y-2)^2-10\geq 0+0-10=-10$
$\Rightarrow A\leq 10$
Vậy $A_{\max}=10$. Giá trị này đạt tại $x-y+1=y-2=0$
$\Leftrightarrow y=2; x=1$
\(A=-x^2+2xy-4y^2+2x+10y-3\)
\(=-x^2+2xy-y^2+2x-2y-1-3y^2+12y-12+10\)
\(=-\left(x^2-2xy+y^2-2x+2y+1\right)-3\left(y^2-4y+4\right)+10\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10< =10\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y+1=3\end{matrix}\right.\)
\(B=-4x^2-5y^2+8xy+10y+12\)
\(=-4x^2+8xy-4y^2-y^2+10y-25+37\)
\(=-4\left(x^2-2xy+y^2\right)-\left(y^2-10y+25\right)+37\)
\(=-4\left(x-y\right)^2-\left(y-5\right)^2+37< =37\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-y=0\\y-5=0\end{matrix}\right.\)
=>x=y=5
B=-x^2+2xy-4y^2+2x+10y-8
B = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
B = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
B = - (x - y - 1)^2 - 3(y - 2)^2 +5 5
Max B = 5 khi x = 3, y = 2
B=-x^2+2xy-4y^2+2x+10y-8
B= x^2-2xy+4y^2-2x-10y+8
B= ( x^2+y^2+1-2xy-2x+2y) +(3y^2-12y+7)
B=(x-y-1)^2+ 3(y^2-4y+7/4)=(x-y-1)^2+3(y-2)^2-27/4>=-... nen A<= 27/4
ban tu tim dau = nhe
\(6M=-6x^2+12xy-24y^2+12x+60y-48\)
\(=(-4x^2+12xy+9y^2)+(-2x^2+12x)+(-15y^2+60y)-48\)
\(=-(2x-3y)^2-2(x^2-6x+9)-15(y^2-4y+4)+30\)
\(=-(2x-3y)^2-2(x-3)^2-15(y-2)^2+30\le30\)
Dấu " = " xảy ra khi : 2x - 3y = 0 ; x - 3 = 0 , y - 2 = 0 => \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy GTLN của M là \(\frac{30}{8}=5\)tại x = 3 , y = 2
Chúc bạn học tốt :>