K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Nối AC

a, Xét t/g ABC có: EA=EB(gt),FB=FC(gt)

=>EF là đường trung bình của t//g ABC

=>EF // AC (1), EF=1/2AC (2)

CMTT ta có: HG//AC (3), HG = 1/2AC (4)

Từ (1),(2),(3),(4) => EF//HG, EF=HG

=> EFGH là HBH

b, để HBH EFGH là hình thoi <=> EF = EH 

=> t/g AHE = t/g BFE

=> góc EAH = góc EBF

=> hình thang ABCD cân

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔBAC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

a: AE=EB=AB/2

CG=GD=CD/2

mà AB=CD

nên AE=EB=CG=GD

AH=HD=AD/2

BF=FC=BC/2

mà AD=BC

nên AH=HD=BF=FC

b: Xét ΔAHE và ΔCFG có

AH=CF

góc A=góc C

AE=CG

=>ΔAHE=ΔCFG

c: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>GH=EF

d: Xét tứ giác EHGF có

EH=FG

EF=GH

=>EHGF là hình bình hành

a: Xét ΔBAC có E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình

=>EF//AC và EF=AC/2

Xét ΔDAC có 

H,G lần lượt là trung điểm của DA,DC

=>HG là đường trung bình

=>HG//AC và HG=AC/2

=>EF//HG và EF=HG

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình

=>EH=BD/2

=>EH=AC/2=EF

Xét tứ giác EHGF có

EF//GH

EF=GH

EH=EF

Do đó: EHGF là hình thoi

b: Xét ΔEHF có Q,M lần lượt là trung điểm của EH,EF

=>QM là đường trung bình

=>QM//HF và QM=HF/2

Xét ΔGHF có

P,N lần lượt là trung điểm của GH,GF

=>PN là đường trung bình

=>PN//HF và PN=HF/2

=>QM//PN và QM=PN

Xét ΔHEG có HQ/HE=HP/HQ=1/2

nên PQ//EG

=>PQ vuông góc HF

=>PQ vuông góc QM

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc PQM=90 độ

Do đó: MNPQ là hình chữ nhật

29 tháng 7 2016

A B C D E F G H

Xét \(\Delta ADB\):

\(AE=EB\left(gt\right)\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).

\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)

Xét \(\Delta CDB:\)

\(FB=FC\left(gt\right)\)

\(GC=GD\left(gt\right)\)

\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).

\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)

Vậy tứ giác \(EFGH\)là hình bình hành.

b) Xét \(\Delta AEH\)và \(\Delta EBF\):

\(AE=EB\left(gt\right)\)

Góc A = Góc B = 90o (ABCD là hình chữ nhật)

\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)

\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)

\(\Rightarrow HE=HF\)

mà tứ giác EFGH là hình bình hành.

Vậy hình bình hành \(EFGH\)là hình thoi.

3 tháng 9 2017

Ta cm theo qui tắc đường trung bình của tam giác là ra ngay 
Ta có E là trung điểm của AB,F là trung điểm của BC>>>EF=1/2AC.tuơng tự HG=1/2 AC>>>EF=HG 
CM ttự với cặp còn lại là ra thôi