K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AE=EB=AB/2

CG=GD=CD/2

mà AB=CD

nên AE=EB=CG=GD

AH=HD=AD/2

BF=FC=BC/2

mà AD=BC

nên AH=HD=BF=FC

b: Xét ΔAHE và ΔCFG có

AH=CF

góc A=góc C

AE=CG

=>ΔAHE=ΔCFG

c: Xét ΔEBF và ΔGDH có

EB=GD

góc B=góc D

BF=DH

=>ΔEBF=ΔGDH

=>GH=EF

d: Xét tứ giác EHGF có

EH=FG

EF=GH

=>EHGF là hình bình hành

6 tháng 9 2018

AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.

29 tháng 7 2016

A B C D E F G H

Xét \(\Delta ADB\):

\(AE=EB\left(gt\right)\)

\(HD=HA\left(gt\right)\)

\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).

\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)

Xét \(\Delta CDB:\)

\(FB=FC\left(gt\right)\)

\(GC=GD\left(gt\right)\)

\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).

\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)

Vậy tứ giác \(EFGH\)là hình bình hành.

b) Xét \(\Delta AEH\)và \(\Delta EBF\):

\(AE=EB\left(gt\right)\)

Góc A = Góc B = 90o (ABCD là hình chữ nhật)

\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)

\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)

\(\Rightarrow HE=HF\)

mà tứ giác EFGH là hình bình hành.

Vậy hình bình hành \(EFGH\)là hình thoi.

3 tháng 9 2017

Ta cm theo qui tắc đường trung bình của tam giác là ra ngay 
Ta có E là trung điểm của AB,F là trung điểm của BC>>>EF=1/2AC.tuơng tự HG=1/2 AC>>>EF=HG 
CM ttự với cặp còn lại là ra thôi

12 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của BA

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình của ΔBAC

Suy ra: EF//AC và \(EF=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có

H là trung điểm của AD

G là trung điểm của CD

Do đó: HG là đường trung bình của ΔADC

Suy ra: HG//AC và \(HG=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EF//HG và EF=HG

Xét tứ giác EFGH có 

EF//HG

EF=HG

Do đó: EFGH là hình bình hành

19 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

31 tháng 12 2021

Chọn C