K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 11 2018

Lời giải:

Ở đây ta sẽ xét bài toán trong TH $m,n$ là số tự nhiên .

Cho \(n=4k+2(k\in\mathbb{N})\)

\(\Rightarrow 3^n+1=3^{4k+2}+1=9^{2k+1}+1\vdots 9+1\vdots 5\) (theo hằng đẳng thức đáng nhớ)

\(2^m\) không có ước là $5$

Do đó \(2^m\not\vdots 3^n+1\) với mọi số tự nhiên $m,n>1$

13 tháng 11 2018

cho em hỏi sao lại xét n=4k+2 ạ

3 tháng 5 2015

Xét hiệu:  2m2 + 2n2 + 1 - 2m - 2n = 2.(m2 - m + 1/4) + 2.(n2 - n +1/4) = \(=2.\left(m-\frac{1}{2}\right)^2+2.\left(n-\frac{1}{2}\right)^2\ge0\) với mọi m; n

=> ĐPCM

 

1 tháng 7 2021

(2m-3)(3n-2)-(3m-2)(2n-3)

=6mn-4m-9n+6-(6mn-9m-4n+6)

=6mn-4m-9n+6-6mn+9m+4n-6

=5m-5n

=5(m-n). Vì 5 chia hết cho 5

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi số nguyên m và n.

Ta có: \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)

\(=6mn-4m-9n+6-6m^2+9m+4n-6\)

\(=5m-5n⋮5\)

5 tháng 4 2015

a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:

m2+1>=2m(1)

n2+1>=2n (2)

Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)

b/ Ta có: (a-b)2>= 0

<=> a+b2-2ab>=0

<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)

<=> (a+b)2>= 4ab

<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0) 

<=> (a+b)/ab>= 4/(a+b) (3)

Mà: 1/a+1/b=(a+b)/ab (4)

Từ (3) và (4)=> 1/a+1/b>=4/(a+b)

<=> (a+b)(1/a+1/b)>=4 (đpcm)

 

5 tháng 4 2015

cộng 2 vế với 4 ab , nhầm ^^

5 tháng 7 2017

Hay thees

18 tháng 7 2017

Ta có : n(2n - 3) - 2n(n + 1)

= 2n2 - 3n - 2n2 - 2n

= 2n2 - 2n2 - 3n - 2n

= -5n 

Mà n nguyên nên -5n chia hết cho 5

18 tháng 7 2017

a, Ta có 

n(2n-3)-2n(n+1)=2n2-3n-2n2-2n

=-5n chia hết cho 5

=> DPCM

b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)

Lại có  (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)

=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0

=> (2m-3)(3n-2)-(3m-2)(2n-3)=0

=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 

=> DPCM

NV
23 tháng 6 2019

\(n=0\Rightarrow x^2-2mx+2m-1=0\)

\(a+b+c=1-2m+2m-1=0\Rightarrow\) pt luôn có nghiệm với mọi m

\(\Delta=\left(2m-n\right)^2-4\left(2m+3m-1\right)\ge0\) (1)

Theo Viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n=-5\end{matrix}\right.\) \(\Rightarrow m=n=-1\)

Thay vào (1) để thử thấy thỏa mãn, vậy ...

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Lời giải:
Gọi $d$ là ƯCLN của $m$ và $n$. Khi đó: 

$m=dx; n=dy$ với $x,y$ là 2 số nguyên dương nguyên tố cùng nhau.

\(2^m-1=2^{dx}-1=(2^d)^x-1\vdots 2^d-1\)

\(2^n-1=2^{dy}-1=(2^d)^y-1\vdots 2^d-1\)

Vì $(2^m-1, 2^n-1)=1$ nên $2^d-1=1$

$\Rightarrow d=1$

Tức là $(m,n)=1$

6 tháng 4 2016

Đương nhiên là vậy rồi, chứng minh làm gì nữa

mk ko bít làm sorry! ~_~

53466

20 tháng 12 2020

Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko

2+3=5; 5+3=8

Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)

Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)