Chứng minh 2m\(⋮̸\)3n+1 với mọi m,n >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hiệu: 2m2 + 2n2 + 1 - 2m - 2n = 2.(m2 - m + 1/4) + 2.(n2 - n +1/4) = \(=2.\left(m-\frac{1}{2}\right)^2+2.\left(n-\frac{1}{2}\right)^2\ge0\) với mọi m; n
=> ĐPCM
(2m-3)(3n-2)-(3m-2)(2n-3)
=6mn-4m-9n+6-(6mn-9m-4n+6)
=6mn-4m-9n+6-6mn+9m+4n-6
=5m-5n
=5(m-n). Vì 5 chia hết cho 5
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5 với mọi số nguyên m và n.
Ta có: \(\left(2m-3\right)\left(3n-2\right)-\left(3m-2\right)\left(2n-3\right)\)
\(=6mn-4m-9n+6-6m^2+9m+4n-6\)
\(=5m-5n⋮5\)
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM
\(n=0\Rightarrow x^2-2mx+2m-1=0\)
\(a+b+c=1-2m+2m-1=0\Rightarrow\) pt luôn có nghiệm với mọi m
\(\Delta=\left(2m-n\right)^2-4\left(2m+3m-1\right)\ge0\) (1)
Theo Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m-n\\x_1x_2=2m+3n-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1+x_2=-1\\\left(x_1+x_2\right)^2-2x_1x_2=13\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n-1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m-n=-1\\2m+3n=-5\end{matrix}\right.\) \(\Rightarrow m=n=-1\)
Thay vào (1) để thử thấy thỏa mãn, vậy ...
Lời giải:
Gọi $d$ là ƯCLN của $m$ và $n$. Khi đó:
$m=dx; n=dy$ với $x,y$ là 2 số nguyên dương nguyên tố cùng nhau.
\(2^m-1=2^{dx}-1=(2^d)^x-1\vdots 2^d-1\)
\(2^n-1=2^{dy}-1=(2^d)^y-1\vdots 2^d-1\)
Vì $(2^m-1, 2^n-1)=1$ nên $2^d-1=1$
$\Rightarrow d=1$
Tức là $(m,n)=1$
Tui làm theo cách tiểu học, để mai nghĩ xem có cách nào làm "cấp 3" ko
2+3=5; 5+3=8
Số số hạng: \(\dfrac{3n-1-2}{3}+1=n\left(so-hang\right)\)
Tổng: \(\dfrac{\left(3n-1+2\right).n}{2}=\dfrac{n\left(3n+1\right)}{2}\)
Lời giải:
Ở đây ta sẽ xét bài toán trong TH $m,n$ là số tự nhiên .
Cho \(n=4k+2(k\in\mathbb{N})\)
\(\Rightarrow 3^n+1=3^{4k+2}+1=9^{2k+1}+1\vdots 9+1\vdots 5\) (theo hằng đẳng thức đáng nhớ)
Mà \(2^m\) không có ước là $5$
Do đó \(2^m\not\vdots 3^n+1\) với mọi số tự nhiên $m,n>1$
cho em hỏi sao lại xét n=4k+2 ạ