K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

câu hỏi là gì vậy bn ê

NV
9 tháng 3 2023

Tìm ước của 3, không phải 2 hay 4

9 tháng 3 2023

Ặk giúp ik mik cần lắm mai mik thi gòi ;))

 

31 tháng 1 2017

4n + 3 chia hết cho 2n + 1

4n + 2 + 1 chia hết cho 2n + 1

2(2n + 1) + 1 chia hết cho 2n + 1

=> 1 chia hết cho 2n + 1

=> 2n + 1 thuộc Ư(1) = {1 ; -1}

Ta có 2 trường hợp

2n + 1 = 1   và     2n + 1 = -1

2n = 0                 2n = -2

n = 0                   n = -1

31 tháng 1 2017

Ta có:

    \(4n+3⋮2n+1\)

    \(2\left(2n+1\right)+1⋮2n-1\)

    \(\Rightarrow1⋮2n-1\)

    \(\Rightarrow2n-1\in\left\{1;-1\right\}\)

    \(\Rightarrow2n\in\left\{2;0\right\}\)

    \(\Rightarrow n\in\left\{1;0\right\}\)

Vậy \(n\in\left\{1;0\right\}\)

15 tháng 11 2017

mình đang gấp mình giải 1 phần phần kia tương tự nha dễ lắm

ta có  2n+3 \(⋮\)n-1

=>    (2n-2)+5\(⋮\)n-1 ( vì 2n +3 =(2n-2)+5)

=>    2(n-1)+5\(⋮\)n-1

mà 2(n-1)\(⋮\)n-1

để (2n-2)+5 \(⋮\)n-1

thì 5 chia hết cho n-1

=> n-1 thuộc ước của 5 là 1;-1;5;-5

th1 n-1=1 

  n=1+1

   n=2

....

vay ...

15 tháng 11 2017

k minhf nha 

3 tháng 1 2016

giải cả cách làm giùm mk dc k

 

7 tháng 12 2019

a) Ta có : 7101=7.(74)25=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

               75=7.(74)1=7.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

Mà \(\left(\overline{...7}\right)-\left(\overline{...7}\right)=\overline{...0}⋮10\)

hay 7101-75\(⋮\)10

Vậy 7101-75\(⋮\)10.

14 tháng 7 2023

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

14 tháng 7 2023

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

9 tháng 10 2017

Ta thấy \(4n+3=\left(4n+12\right)-9=2\left(2n+6\right)-9\)

Để 4n + 3 chia hết cho 2n + 6 thì 9 phải chia hết cho 2n + 6

Ta thấy ngay \(2n+6=9\Rightarrow n=\frac{3}{2}\) (Loại)

Vậy không có số tự nhiên n thỏa mãn điều kiện đề bài.

9 tháng 10 2017

2n+6=2(n+3)

4n+3=3n+(n+3)

2(n+3) chia hết n+3

nên để 4n+3 chia hết 2n+6

thì 2(n+3) chia hết 3n

vì 2 không chia hết cho 3n nên n+3 phải chia hết cho 3n 

=>n=3