K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

bạn vẽ hình ra đi

14 tháng 2 2020

ABCNM

a ) Xét tam giác AMB và tam giác NMC có :

AM = MN ( gt )
Góc AMB = góc NMC ( đối đỉnh )

BM = MC ( vì AM là đường trung tuyến của BC )

=> Tam giác AMB = Tam giác NMC ( c.g.c )

=> Góc ABM = góc NCM ( 2 góc tương ứng )

Mà góc ABM = góc NCM so le trong 

=> CN // AB 

b ) Xét tam giác ABC và tam giác NCB có :

AB = NC ( tam giác AMB = tam giác NMC mà cạnh AB và NC là 2 cạnh tương ứng )

Góc ABC = góc NCB ( vì tam giác AMB = tam giác NMC mà góc ABC và góc NCB là 2 góc tương ứng )

AB là cạnh chung 

=> Tam giác ABC = Tam giác NCB ( c.g.c )

26 tháng 1 2017

m chưa học trung tuyến

26 tháng 1 2017

câu a theo mk thì bạn nên chứng minh 2 tam giác đồng dạng: tam giác ABM và tam giác MNC

5 tháng 2 2017

A B C M N

a) Xét tam giác AMB và tam giác NMC có:

AM=MN (gt)

Góc AMB=góc NMC (đối đỉnh)

BM=MC(vì AM là đường trung tuyến của BC)

=> Tam giác AMB = tam giác NMC (c.g.c) => góc ABM=góc NCM ( 2 góc tương ứng )

mà góc ABM và góc NCM so le trong => CN//AB

b) Xét tam giác ABC và tam giác NCB có:

AB=NC (\(\Delta AMB=\Delta NMC\) mà cạnh AB và NC là 2 cạnh tương ứng)

Góc ABC = góc NCB ( \(\Delta AMB=\Delta NMC\) mà góc ABC và góc NCB là 2 góc tương ứng)

AB là cạnh chung

=> Tam giác ABC và tam giác NCB (c.g.c)

c) bạn tham khảo câu trả lời của mình ở đây: https://olm.vn/hoi-dap/question/827711.html

8 tháng 4 2018

1 )  Do tam giác ABC cân tại A , AM là trung tuyến 

=> AM là đường cao của BC 

Lại có : BE là đường cao của AC 

Mà BE cắt AM tại H 

=> H là trực tâm của tam giác ABC . 

=> CH vuông góc với AB 

2 ) Vào mục câu hỏi hay : 

Câu hỏi của Hỏa Long Natsu ( mình ) 

Chúc bạn học tốt !!! 

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E