Tìm các giá trị m,n để:2^m+2019=|n-2018|+n-2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Để \(\frac{n-2018}{n-2019}\)là phân số thì \(\left(n\in Z;n\ne2019\right)\)
b, Để \(\frac{n-2018}{n-2019}\)là số nguyên thì \(\left(n-2018\right)⋮\left(n-2019\right)\)
\(\Leftrightarrow\left(n-2019\right)+1⋮\left(n-2019\right)\)
\(\Leftrightarrow1⋮\left(n-2019\right)\Leftrightarrow\left(n-2019\right)\inƯ\left(1\right)\)
\(\Leftrightarrow\left(n-2019\right)\in\left(1;-1\right)\Leftrightarrow n\in\left(2020;2018\right)\)
a) Để P là phân số thì \(n-2019\ne0\)
\(\Leftrightarrow n\ne0+2019\)
\(\Leftrightarrow n\ne2019\)
Vậy \(n\ne2019\) thì P là phân số.
b) Ta có: \(\frac{n-2018}{n-2019}=\frac{n-2019+1}{n-2019}=1+\frac{1}{n-2019}\)
Để \(P\inℤ\) thì \(\frac{1}{n-2019}\inℤ\)
\(\Rightarrow1⋮\left(n-2019\right)\)
\(\Leftrightarrow n-2019\inƯ\left(1\right)=\left\{-1;1\right\}\)
Lập bảng:
\(n-2019\) | \(-1\) | \(1\) |
\(n\) | \(2018\) | \(2020\) |
Vậy \(n\in\left\{2018;2020\right\}\) thì P nguyên.
Ta có: 2m + 2019 = |n-2018| + n - 2018
+ Nếu n < 2018 thì |n-2018| = -n + 2018
Suy ra: 2m + 2019 = -n + 2018 + n - 2018 = 0 (loại vì \(m\inℕ\))
+ Nếu \(n\ge2018\)thì |n-2018| = n - 2018
Suy ra: 2m + 2019 = (n - 2018) + (n - 2018) = 2(n - 2018)
Suy ra: 2m là số lẻ => m=0 (t/m)
Khi đó: 20 + 2019 = 2(n - 2018)
1 + 2019 = 2n - 2018
2020 + 2018 = 2n
4038 = 2n
n = 2019 (t/m)
Vậy m=0; n=2019
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
\(x=0\) không là nghiệm của phương trình
Chia hai vế phương trình cho x, phương trình trở thành:
\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)
Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)
\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)
Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)
\(\Leftrightarrow m\ge f\left(2\right)=-2\)
\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán
\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)
\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)
\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)
\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)
b/ \(M=2018+2018^2+...+2018^{2018}\)
\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)
Lấy dưới trừ trên:
\(2018M-M=-2018+2018^{2019}\)
\(\Rightarrow2017M=2018^{2019}-2018\)
\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)
\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)
\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)
\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)
\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)
\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)
\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)
\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)
\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)
\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)
\(\Rightarrow P=\frac{2}{4037^{1009}}\)
Nhận xét
- với x >= 0 thì |x|+x = 2x
- với x < 0 thì |x|+x = 0
Do đó |x|+x luôn chẵn với mọi x
Áp dụng nhận xét trên thì |n-2018|+n-2018 luôn chẵn với mọi n-2018
=>2m+2019 chẵn => 2m lẻ <=> m = 0
Khi đó |n-2018|+n-2018=2020
- Nếu n < 2018, ta có: -(n-2018)+n-2018 = 2020 <=> 0 = 2020 (vô lí)
- Nếu n >= 2018, ta có: n-2018+n-2018 = 2020 <=> 2(n-2018) = 2020 <=> n-2018=1010 <=> n=3028
Vậy m=0,n=3028
Ta có:\(\left|n-2018\right|=n-2018\Leftrightarrow n-2018\ge0\Leftrightarrow n\ge2018\)
\(\left|n-2018\right|=2018-n\Leftrightarrow n-2018< 0\Leftrightarrow n< 2018\)
Với \(n\ge2018\)thì (1) trở thành:
\(2^m+2019=n-2018+n-2018\)
\(\Rightarrow2^m+2019=2n-4036\)
với m>0 \(\Rightarrow2^m+2019\)và \(2n-4036\)khác tính chẵn lẻ nên không có m,n thỏa mãn
với m=0 \(\Rightarrow1+2019=2\left(n-2018\right)\)
\(\Rightarrow1010=n-2018\)
\(\Rightarrow n=3028\)
Với \(n< 2018\) thì (1) trở thành:
\(2^m+2019=2018-n+n-2018\)
\(\Rightarrow2^m+2019=0\)
\(\Rightarrow2^m=-2019\)(vô lý)
Vậy..................