K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

Nhận xét 

- với x >= 0 thì |x|+x = 2x 

- với x < 0 thì |x|+x = 0

Do đó |x|+x luôn chẵn với mọi x

Áp dụng nhận xét trên thì |n-2018|+n-2018 luôn chẵn với mọi n-2018

=>2m+2019 chẵn => 2m lẻ <=> m = 0 

Khi đó |n-2018|+n-2018=2020

- Nếu n < 2018, ta có: -(n-2018)+n-2018 = 2020 <=> 0 = 2020 (vô lí)

- Nếu n >= 2018, ta có: n-2018+n-2018 = 2020 <=> 2(n-2018) = 2020 <=> n-2018=1010 <=> n=3028

Vậy m=0,n=3028

15 tháng 11 2018

Ta có:\(\left|n-2018\right|=n-2018\Leftrightarrow n-2018\ge0\Leftrightarrow n\ge2018\)

         \(\left|n-2018\right|=2018-n\Leftrightarrow n-2018< 0\Leftrightarrow n< 2018\)

Với \(n\ge2018\)thì (1) trở thành:

\(2^m+2019=n-2018+n-2018\)

\(\Rightarrow2^m+2019=2n-4036\)

với m>0 \(\Rightarrow2^m+2019\)và \(2n-4036\)khác tính chẵn lẻ nên không có m,n thỏa mãn

với m=0 \(\Rightarrow1+2019=2\left(n-2018\right)\)

\(\Rightarrow1010=n-2018\)

\(\Rightarrow n=3028\)

Với \(n< 2018\) thì (1) trở thành:

\(2^m+2019=2018-n+n-2018\)

\(\Rightarrow2^m+2019=0\)

\(\Rightarrow2^m=-2019\)(vô lý)

Vậy..................

22 tháng 3 2019

a,Để \(\frac{n-2018}{n-2019}\)là phân số thì \(\left(n\in Z;n\ne2019\right)\)

b, Để \(\frac{n-2018}{n-2019}\)là số nguyên thì \(\left(n-2018\right)⋮\left(n-2019\right)\)

\(\Leftrightarrow\left(n-2019\right)+1⋮\left(n-2019\right)\)

\(\Leftrightarrow1⋮\left(n-2019\right)\Leftrightarrow\left(n-2019\right)\inƯ\left(1\right)\)

\(\Leftrightarrow\left(n-2019\right)\in\left(1;-1\right)\Leftrightarrow n\in\left(2020;2018\right)\)

22 tháng 3 2019

a) Để P là phân số thì \(n-2019\ne0\)

\(\Leftrightarrow n\ne0+2019\)

\(\Leftrightarrow n\ne2019\)

Vậy \(n\ne2019\) thì P là phân số.

b) Ta có: \(\frac{n-2018}{n-2019}=\frac{n-2019+1}{n-2019}=1+\frac{1}{n-2019}\)

Để \(P\inℤ\) thì \(\frac{1}{n-2019}\inℤ\)

\(\Rightarrow1⋮\left(n-2019\right)\)

\(\Leftrightarrow n-2019\inƯ\left(1\right)=\left\{-1;1\right\}\)

Lập bảng:

\(n-2019\)\(-1\)\(1\)
\(n\)\(2018\)\(2020\)

Vậy \(n\in\left\{2018;2020\right\}\) thì P nguyên.

29 tháng 12 2018

Ta có: 2m + 2019 = |n-2018| + n - 2018

 + Nếu n < 2018 thì |n-2018| = -n + 2018

 Suy ra: 2m + 2019 =  -n + 2018 + n - 2018 =  0 (loại vì \(m\inℕ\))

 + Nếu \(n\ge2018\)thì |n-2018| = n - 2018

 Suy ra: 2m + 2019 = (n - 2018) + (n - 2018) = 2(n - 2018)

  Suy ra: 2m là số lẻ => m=0 (t/m)

 Khi đó: 20 + 2019 = 2(n - 2018) 

             1 + 2019 = 2n - 2018

              2020 + 2018 = 2n

             4038              = 2n

               n = 2019 (t/m)

Vậy m=0; n=2019

DT
2 tháng 10 2023

Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0

=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0 

Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1

Thay vào bt S :

S = ( 2 - 1)^2019 + (2-1)^2019

= 1^2019 + 1^2019 = 2

2 tháng 10 2023

em cảm ơn

 

1 tháng 1 2021

\(x=0\) không là nghiệm của phương trình

Chia hai vế phương trình cho x, phương trình trở thành:

\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)

Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)

\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)

Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)

\(\Leftrightarrow m\ge f\left(2\right)=-2\)

\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán

NV
7 tháng 5 2019

\(M=\left(2018+2018^2\right)+\left(2018^3+2018^4\right)+...+\left(2018^{2017}+2018^{2018}\right)\)

\(=2018\left(1+2018\right)+2018^3\left(1+2018\right)+...+2018^{2017}\left(1+2018\right)\)

\(=2018.2019+2018^3.2019+...+2018^{2017}.2019\)

\(=2019\left(2018+2018^3+...+2018^{2017}\right)⋮2019\)

b/ \(M=2018+2018^2+...+2018^{2018}\)

\(2018M=2018^2+2018^3+...+2018^{2018}+2018^{2019}\)

Lấy dưới trừ trên:

\(2018M-M=-2018+2018^{2019}\)

\(\Rightarrow2017M=2018^{2019}-2018\)

\(\Rightarrow M=\frac{2018^{2019}-2018}{2017}=\frac{2018^{2019}}{2017}-\frac{2017+1}{2017}=\frac{2018^{2019}}{2017}-1-\frac{1}{2017}\)

\(\Rightarrow M=N-\frac{1}{2017}\Rightarrow M< N\)

7 tháng 5 2019

Cảm ơn bạn đã giúp mình

Y
16 tháng 6 2019

\(\frac{a^4}{2018}+\frac{b^4}{2019}=\frac{1}{4037}\)

\(\Leftrightarrow\frac{2019a^4+2018b^4}{2018\cdot2019}=\frac{a^2+b^2}{2018+2019}\)

\(\Leftrightarrow\left(2018+2019\right)\left(2019a^4+2018b^4\right)=2018\cdot2019\left(a^2+b^2\right)\)

\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4+2018\cdot2019\cdot a^4+2018\cdot2019b^4=2018\cdot2019\cdot a^2+2018\cdot2019\cdot b^2\)

\(\Leftrightarrow2019^2\cdot a^4+2018^2\cdot b^4=2018\cdot2019\cdot a^2\left(1-a^2\right)+2018\cdot2019\cdot b^2\left(1-b^2\right)\)

\(\Leftrightarrow\left(2019a^2\right)^2+\left(2018b^2\right)^2=2\cdot2018\cdot2019\cdot a^2\cdot b^2\)

\(\Leftrightarrow\left(2019a^2-2018b^2\right)=0\)

\(\Leftrightarrow2019a^2=2018b^2\Leftrightarrow\frac{a^2}{2018}=\frac{b^2}{2019}=\frac{a^2+b^2}{2018+2019}=\frac{1}{4037}\)

\(\Rightarrow\frac{a^{2018}}{2018^{10009}}=\frac{b^{2018}}{2019^{1009}}=\frac{1}{4037^{1009}}\)

\(\Rightarrow P=\frac{2}{4037^{1009}}\)