Cho hình chữ nhật ABCD, O là giáo điểm 2 đường chéo. Điểm I nằm trên cạnh OA. Qua I kẻ đường thẳng //BD, cắt AD và AB theo thứ tự ở E, F.
a. CMR: IE = IF.
b. K, M theo thứ tự là trung điểm của BE, DF. Xác định hình dạng tứ giác IKOM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BEDF có
BF//ED
BF=ED
Do đó: BEDF là hình bình hành
Suy ra: BE//DF
Xét ΔAQD có
E là trung điểm của AD
EP//QD
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//BP
Do đó: Q là trung điểm của CQ
Suy ra: CQ=PQ(2)
Từ (1) và (2) suy ra AP=PQ=QC
a: Xét tứ giác BEDF có
ED//BF
ED=BF
Do đó: BEDF là hình bình hành
Xét ΔAQD có
E là trung điểm của AD
EP//DQ
Do đó: P là trung điểm của AQ
Suy ra: AP=PQ(1)
Xét ΔCPB có
F là trung điểm của BC
FQ//PB
Do đó: Q là trung điểm của CP
Suy ra: CQ=QP(2)
Từ (1) và (2) suy ra AP=PQ=QC
a: Xét ΔAOB có IF//OB
nên IF/OB=AI/AO
Xét ΔAOD có IE//OD
nên IE/OD=AI/AO=IF/OB
=>IE=IF
b: Xét ΔDFB có DM/DF=DO/DB
nen OM//FB và OM=1/2FB
Xét ΔEFB có EI/EF=EK/EB
nên KI//FB và KI=1/2FB
=>OM//KI và OM=KI
=>IKOM là hình bình hành