K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

\(\left(x+y+1\right)^2=3\left(x^2+y^2+1\right)\)

\(\Rightarrow x^2+y^2+1+2xy+2y+2x=3x^2+3y^2+3\)

\(\Rightarrow3x^2+3y^2+3-x^2-y^2-1-2xy-2y-2x=0\)

\(\Rightarrow2x^2+2y^2+2-2xy-2y-2x=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\Rightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow x=y=1\)(thỏa mãn)

22 tháng 10 2015

1)

Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)

x+16=y =>x-y=-16

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)

=>\(\frac{x}{7}=-4=>x=-28\)

=>\(\frac{y}{3}=-4=>y=-12\)

Vậy x=-28 ;y=-12

2)

=>x2-3x+5 chia hết cho x-3

mà (x-3)2 chia hết cho x-3

=>x2-3x+5 -(x-3)2 chia hết cho x-3

=> x2-3x+5 -x2-9 chia hết cho x-3

=>-3x+(-4) chia hết cho x-3

lại có : 3.(x-3) chia hết cho x-3

=>-3x-(-4)+3.(x-3) chia hết cho x-3

=>-3x+(-4)+3x-9 chia hết cho x-3 

=>-13 chia hết cho x-3

=>x-3 \(\in\)Ư(13)={-1;1;-13;13}

=>x\(\in\){2;4;-9;16}

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2