K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC cân tại A

nên AB=AC

b: Xét ΔABM và ΔACN có

AB=AC
\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

c: Ta có: ΔABM=ΔACN

nên AM=AN

hay ΔAMN cân tại A

2 tháng 3 2022

Giúp mik vs mn, đang cầm gấp ạ

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Hình vẽ:

undefined

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:
a) 

Theo định lý tổng 3 góc trong tam giác:

$\widehat{D}+\widehat{E}+\widehat{F}=180^0$

$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$

Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$

Do đó:

$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$

b) 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$BM=CM$ (do $M là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)

a: Xét ΔABC có 

MN//BC

nên \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

mà AB=AC

nên AM=AN

Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

26 tháng 9 2021

a) Ta có: MN//BC(gt)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMN}=\widehat{ABC}\\\widehat{ANM}=\widehat{ACB}\end{matrix}\right.\)

Mà \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

=> Tam giác AMN cân tại A

b) Xét tứ giác BMNC có:

MN//BC

\(\widehat{ABC}=\widehat{ACB}\)(Tam giác ABC cân tại A)

=> BMNC là hthang cân

c) Ta có: BMNC là hthang cân

=> BN=MC

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

Do đó:ΔABM=ΔACM

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

c: Ta có: ΔAHM=ΔAKM

nên AH=AK

hay ΔAHK cân tại A

Xét ΔABC có AH/AB=AK/AC

nên HK//BC