Cho 2 số a,b thỏa mãn a2+b2=1
Chứng minh \(a\sqrt{1+b}+b\sqrt{1+a}\le\sqrt{2+\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\text{VT}^2\leq (a^2+b^2)(1+a+1+b)=a+b+2\)
Áp dụng BĐT Cô-si:
\((a+b)^2\leq 2(a^2+b^2)=2\Rightarrow a+b\leq \sqrt{2}\)
Do đó: $\text{VT}^2\leq 2+\sqrt{2}$
$\Rightarrow \text{VT}\leq \sqrt{2+\sqrt{2}}$ (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
\(\left(a^2+b^2-2\right)\left(a+b\right)^2+\left(1-ab\right)^2+4ab=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-2\left(ab+1\right)\right]\left(a+b\right)^2+1+2ab+a^2b^2=0\)
\(\Leftrightarrow\left(a+b\right)^4-2\left(a+b\right)^2\left(ab+1\right)+\left(ab+1\right)^2=0\)
\(\Leftrightarrow\left[\left(a+b\right)^2-\left(ab+1\right)\right]^2=0\)
\(\Leftrightarrow\left(a+b\right)^2-\left(ab+1\right)=0\)
\(\Leftrightarrow ab+1=\left(a+b\right)^2\)
\(\Rightarrow\sqrt{ab+1}=\left|a+b\right|\) là số hữu tỉ (đpcm)
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\) (x;y;z > 0 do a;b;c>0)
Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\)
Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\) (1)
Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\) . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)
Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)
Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)
Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)
Từ (1) ; (2) suy ra : \(VT\ge VP\)
" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Ta có:\(a^5+ab+b^2\ge3a^2b\)
Tương tự ta có:
\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)
\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)
Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)
\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)
Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)
\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
Giả sử \(xy\le1\) thì \(z\ge1\)
Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)
\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)
Dấu = khi \(a=b=c=1\)
Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)
\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)
Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)
\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)
Khi đó bất đẳng thức cần chứng minh trở thành
\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)
hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)
Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là
\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)
Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được
\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)
Áp dụng tương tự ta được
\(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)
hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là
\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)
Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)
\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)
hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng
Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)
Áp dụng BDT Bu-nhi-a-cốp-xki ta có:
\(\left(a\sqrt{1+b}+b\sqrt{1+a}\right)^2\le\left(a^2+b^2\right)\left(2+a+b\right)=a+b+2\)
Tiếp tục áp dụng BĐT Bu-nhi-a-cốp-xki ta có: \(\left(1.a+1.b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\Rightarrow a+b\le\sqrt{2}\)
\(\Rightarrow\left(a\sqrt{1+b}+b\sqrt{1+a}\right)^2\le a+b+2\le2+\sqrt{2}\Rightarrow a\sqrt{1+b}+b\sqrt{1+a}\le\sqrt{2+\sqrt{2}}\)