K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

hghjh

11 tháng 11 2018

Bạn tự vẽ hình nha !

Ta có H là trung điểm của AB . K là trung điểm của CD \(\Rightarrow\left\{{}\begin{matrix}OH\perp AB\\OK\perp CD\end{matrix}\right.\)

Theo đề bài : \(AB=CD\Rightarrow HA=HB=KC=KD\)

Xét tam giác vuông OAH và tam giác vuông OCK ta có :

\(\left\{{}\begin{matrix}OA=OC\left(=R\right)\\AH=CK\left(cmt\right)\end{matrix}\right.\Rightarrow\Delta OAH=\Delta OCK\)

\(\Rightarrow OH=OK\) ( Hai cạnh tương ứng )

Ta có : \(OH^2+HI^2=OK^2+KI^2\left(=OI^2\right)\)

\(OH=OK\Rightarrow HI=KI\left(đpcm\right)\)

11 tháng 11 2018

CẢM ƠN

21 tháng 6 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

17 tháng 2 2017

Ta có: OH ⊥ AB

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

 

Vậy EA = EC. (đpcm)

18 tháng 9 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Nối OE ta có: AB = CD

=> OH = OK (Định lí 3)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

=> ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

b) Ta có: OH ⊥ AB

Để học tốt Toán 9 | Giải bài tập Toán 9

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

Vậy EA = EC. (đpcm)

27 tháng 9 2021

a, Ta có : d(O;AB) = OH 

d(O;CD) = OK 

AB = CD => OH = OK => EB = ED 

mà H ; K lần lượt là trung điểm AB và CD => EH = EK 

b, Vi OH = OK => AE = EC 

10 tháng 6 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: HA = HB (gt)

Suy ra : OH ⊥ AB (đường kính dây cung)

Lại có : KC = KD (gt)

Suy ra : OK ⊥ CD (đường kính dây cung)

Mà AB > CD (gt)

Nên OK > OH (dây lớn hơn gần tâm hơn)

Áp dụng định lí Pitago vào tam giác vuông OHM ta có :

O M 2 = O H 2 + H M 2

Suy ra :  H M 2 = O M 2 - O H 2  (1)

Áp dụng định lí Pitago vào tam giác vuông OKM ta có:

O M 2 = O K 2 + K M 2

Suy ra:  K M 2 = O M 2 - O K 2  (2)

Mà OH < OK (cmt) (3)

Từ (1), (2) và (3) suy ra: H M 2 > K M 2  hay HM > KM

25 tháng 4 2017

a)Vì HA=HB nên OH⊥AB

Vì KC=KD nên OK⊥CD

Mặt khác, AB=CD nên OH=OK (hai dây bằng nhau thì cách đều tâm).

ΔHOE=ΔKOE (cạnh huyền, cạnh góc vuông)

Suy ra EH=EK. (1)

b) Ta có AH=KC (một nửa của hai dây bằng nhau). (2)

Từ (1) và (2) suy ra EH+HA=EK+KC hay EA=EC.