Giải phương trình: (x+1)(x+2)(x+4)(x+8)=28\(x^2\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
\((x+1)(x+2)(x+4)(x+8)=28x^2\)
\(\Leftrightarrow\text{(x}^2+6\text{x}+8)(\text{x}^2+9\text{x}+8)=28\text{x}^2\) \((1)\)
Thấy x = 0 không là nghiệm của \((1)\). Chia \((2)\)vế \((1)\)cho \(\text{x}^2\)ta được :
\((1)\Leftrightarrow(\text{x}+\frac{8}{\text{x}}+6)(\text{x}+\frac{8}{9}+9)=28\)
Đặt \(\text{t}=\text{x}+\frac{8}{\text{x}}\). Ta có :
\((1)\Leftrightarrow(\text{t}+6)(\text{t}+9)=28\)
\(\Leftrightarrow\text{t}^2+15\text{t}+26=0\Leftrightarrow\orbr{\begin{cases}\text{t}=-2\\\text{t}=-13\end{cases}}\)
\(\Delta=13^2-4(1\cdot8)=137\Rightarrow x_{1,2}=\frac{-13\pm\sqrt{137}}{2}\)\((\)thỏa mãn\()\)
Vậy :
TL bạn cho mình hỏi là ở chỗ chia 2 về (1) cho \(x^2\) sao lại ra cái phần dưới vậy