Gọi a, b, c là 3 số đôi một nguyên tố cùng nhau.Chứng minh rằng:
a)\(\text{ƯCLN}\left(a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right),\left(ab\right)\left(bc\right)\left(ca\right)\right)=1\)
b)\(\text{ƯCLN}\left(ab+bc+ca,abc\right)=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ac}{\left(b-a\right)\left(b-c\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
\(=-\dfrac{bc\left(b-c\right)+ca\left(c-a\right)+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\dfrac{bc\left(b-c\right)+ca\left[-\left(b-c\right)-\left(a-b\right)\right]+ab\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\dfrac{\left(b-c\right)\left(bc-ca\right)+\left(a-b\right)\left(ab-ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\dfrac{\left(b-c\right)c\left(b-a\right)+\left(a-b\right)a\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\dfrac{\left(b-c\right)\left(b-a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\left(đpcm\right)\)
Lời giải:
$M=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}$
$=\frac{-[ab(a-b)+bc(b-c)+ca(c-a)]}{(a-b)(b-c)(c-a)}$
$=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1$
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Bài này mình làm một lần ở trường rồi nhưng không có điện thoại chụp được:((
Ta có: \(\dfrac{a^3}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)+b^3\left(a-c\right)-c^3\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{a^3\left(c-b\right)+b^3a-b^3c-c^3a+c^3b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c^3-b^3\right)+bc\left(c^2-b^2\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{a^3\left(c-b\right)-a\left(c-b\right)\left(a^2+bc+b^2\right)+bc\left(c-b\right)\left(c+b\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left(a^3-ac^2-abc-ab^2+bc^2+b^2c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}=\dfrac{\left(c-b\right)\left[a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)\(=\dfrac{\left(c-b\right)\left[a\left(a-b\right)\left(a+b\right)-c\left(a-b\right)-bc\left(a-b\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a^2+ab-c-bc\right)}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}\)
\(\dfrac{\left(c-b\right)\left(a-b\right)\left[a^2-c^2+ab-bc\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=\dfrac{\left(c-b\right)\left(a-b\right)\left(a-c\right)\left(a+b+c\right)}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)\(=a+b+c\)
Vì a, b, c là các số nguyên
=> a+b+c là các số nguyên
=> Đpcm.
Đấy mình làm chi tiết tiền tiệt lắm luôn, không hiểu thì mình chịu rồi, trời lạnh mà đánh máy nhiều thế này buốt tay lắm luôn:vv