chứng minh rằng ab-ba thì chia hết cho 9 biết a>b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a,ab = 10a + b
ba = 10b + a
=>ab + ba = 11(a+b) chia het cho 11.
b,ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
a) Xét tổng ab + ba = (10 x a + b) + (10 x b + a)
= 11 x a + 11 x b
= (a +b) x 11 chia hết cho 11
b) Xét hiệu ab - ba = (10a + b) - (10b + a)
= 9 x a - 9 x b
= (a - b) x 9 chia hết cho 9
đặt c = a+ b
ta có: ab¯ + ba¯ =cc¯
mà cc¯ chia hết cho 11 ( cc¯:11=c)
ab=10*a+b
ba=10*b+a
ab-ba=9*a-9*b=9*(a-b)=> ab-ba chia hết cho 9
ab+ba=10a + b +10b + a = 11a + 11b = 11 (a+b) chia hết cho 111
tớ chỉ giải đc 1 câu thôi còn câu b tịt
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
Để mình giải giúp ha !!
ta có 20a20a20a=20a20a . 1000 +20a =(20a . 1000+20a)1000+20a
=1001 . 20a . 1000 + 20a
Theo đề bài 20a20a20a chia hết cho 7 , mà 1001 chia hết cho 7 nên => 20a chia hết cho 7
nên (4 + a) chia hết cho 7 . Vậy a = 3
b)ta co:ab+ba=(a.10+b)+(b.10+a)=11a+11b
suy ra ab+ba chia het cho 11
a, Ta có: abba = 1000a +100b + 10b + a = 1001a + 110b = 11 . 91a + 11 . 10b = 11(91a + 10b) chia hết cho 11
Vậy abba chia hết cho 11
b, Ta có: ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b) chia hết cho 9
Vậy ab - ba chia hết cho 9.
Ta có:
ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a + b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)
Mình xin sửa lại:
Ta có:
ab - ba = 10a + b - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b)
Vậy ta suy ra 9(a - b) chia hết cho 9 hay ab - ba chia hết cho 9 (a > b)