tìm số tự nhiên n sao cho n3-4n2+4n-1 là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 4n + 7 chia hết cho 2n + 1
⇒ 4n + 2 + 5 chia hết cho 2n + 1
⇒ 2(2n + 1) + 5 chia hết cho 2n + 1
⇒ 5 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(5) (ước dương)
⇒ 2n + 1 ∈ {1; 5}
⇒ n ∈ {0; 2}
Xét p = 2 => p + 10 = 12 không là số nguyên tố
Xét p = 3 => p + 10 = 13 là số nguyên tố, p + 20 = 23 là số nguyên tố.
=> Chôn p = 3.
Xét p > 3 mà p là số nguyên tố => p có dạng p = 3k + 1 hoặc p = 3k + 2
+ Nếu p = 3k + 1 => p + 20 = 3k + 21 = 3(k +7) chia hết cho 3
Mà p > 3 => p + 20 không là số nguyên tố (vô lý)
+ Nếu p = 3k + 2 => p + 10 = 3k + 12 = 3(k + 4) chia hết cho 3
Mà p >3 => p + 10 không là số nguyên tố (vô lý)
Vậy p =3
b) Có 4n+5 chia hết cho 2n+1
=>2(n+1)+3 chia hết cho 2n+1
=>2n+1 thuộc Ư(3)={1;3}
Với 2n+1=1 =>n=0
Với 2n+1=3 =>n=1
Vì đề bài là tìm số tự nhiên n nên 3 chỉ có 2 ước thôi nha
a, p là số nguyên tố
+ xét p = 2 => p + 10 = 2 + 10 = 12 là hợp số
=> p = 2 (loại)
+ xét p= 3 => p + 10 = 3 + 13 = 13 thuộc P
p + 20 = 3 + 20 = 23 thuộc P
=> p = 3 (nhận)
+ p là số nguyên tố và p > 3
=> p = 3k + 1 hoặc p = 3k + 2
xét p = 3k + 1 => p + 20 = 3k + 1 + 20 = 3k + 21 = 3(k + 7) là hợp số
=> p = 3k + 1 loaị
+ xét p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) là hợp số
=> p = 3k + 2 loại
vậy p = 3
b, 4n + 5 chia hết cho 2n + 1
=> 4n + 2 + 3 chia hết cho 2n + 1
=> 2(2n + 1) + 3 chia hết cho 2n + 1
=> 3 chia hết cho 2n + 1
xét ư(3) là ok nhé
theo như cách lớp 8 thi => n = 0
Còn nếu bn đang hc lớp 6 thì mik chịu ko bt giải cách lớp 6
tớ biết nè
p= 2x2^4n+1
p=2x2^5n
p=2x32n
p=64n
p=64n+1
p=65.n
suy ra 65 là số nguyên tố nên cậu bằng tuổi tớ đó cứ theo cách của tớ nhé
n=1
như vầy đó cách này tớ học ở lớp
`P=n^3-n^2+n-1`
`=n^2(n-1)+(n-1)`
`=(n-1)(n^2+1)`
Vì n là stn thì p là snt khi
`n-1=1=>n=2`
Vậy n=2
Với n\(\in\)N
Đặt A=\(n^3-4n^2+4n-1\)
Khi đó:
\(A=\left(n-1\right)\left(n^2+n+1\right)-4n\left(n-1\right)\\ A=\left(n-1\right)\left(n^2+n+1-4n\right)\\ A=\left(n-1\right)\left(n^2-3n+1\right)\)
Để A là số nguyên thì A phải là tích của 1 và chính nó\(\Rightarrow\left[{}\begin{matrix}n-1=1\\n^2-3n+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=3\end{matrix}\right.\left(tm\right)}}\)Thử lại:
+)\(n=2\Rightarrow A=\left(2-1\right)\left(2^2-3.2+1\right)\\ A=-1\left(Loại\right)\)
+)n=0\(\Rightarrow A=\left(0-1\right)\left(0^2-3.0+1\right)\\ A=-1\left(L\right)\)
Vậy n=3 thì A là snt.
+)n=3\(\Rightarrow A=\left(3-1\right)\left(3^2-3.3+1\right)\\ A=2\left(TM\right)\)
Kết luận bị ghi đè lên trên bạn ghi lại xuống dưới giùm mình nha