Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
a) điều kiện xác định : \(x\ne2;x\ne-1\)
ta có : \(\dfrac{x+2}{x+1}+\dfrac{3}{x-2}=\dfrac{3}{x^2-x-2}+1\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3+x^2-x-2}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=x^2-x+1\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\)
vậy \(x=\dfrac{1}{2}\)
b) điều kiện xác định : \(x\ne5;x\ne-6\)
ta có : \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow\dfrac{\left(x+6\right)^2+\left(x-5\right)^2}{\left(x-5\right)\left(x+6\right)}=\dfrac{2x^2+23x+61}{\left(x-5\right)\left(x+6\right)}\)
\(\Rightarrow x^2+12x+36+x^2-25x+25=2x^2+23x+61\)
\(\Leftrightarrow-13x=23x\Leftrightarrow x=0\left(tmđk\right)\)
vậy \(x=0\)
a) \(\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
=> \(\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x+\frac{1}{3}=0\)
=> \(\left(\frac{2}{3}x-\frac{1}{2}x\right)+\left(-\frac{2}{5}+\frac{1}{3}\right)=0\)
=> \(\frac{1}{6}x-\frac{1}{15}=0\Rightarrow\frac{1}{6}x=\frac{1}{15}\Rightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{2}{5}\)
Vậy x = 2/5
b) \(\frac{1}{3}x+\frac{2}{5}\left(x+1\right)=0\)
=> \(\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
=> \(\frac{11}{15}x+\frac{2}{5}=0\Rightarrow\frac{11}{15}x=-\frac{2}{5}\)
=> \(x=\left(-\frac{2}{5}\right):\frac{11}{15}=\left(-\frac{2}{5}\right)\cdot\frac{15}{11}=-\frac{6}{11}\)
Vậy x = -6/11
c) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
=> \(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=> \(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)+\left(-\frac{1}{3}x-x\right)=5\)
=> \(\frac{2}{3}-\frac{4}{3}x=5\)
=> \(\frac{4}{3}x=-\frac{13}{3}\Rightarrow x=\left(-\frac{13}{3}\right):\frac{4}{3}=\left(-\frac{13}{3}\right)\cdot\frac{3}{4}=-\frac{13}{4}\)
Vậy x = -13/4
d) \(\frac{11}{5}-\left(\frac{7}{9}-x\right)\cdot\frac{3}{8}=\frac{61}{90}+\frac{x}{3}\)
=> \(\frac{11}{5}-\frac{3}{8}\left(\frac{7}{9}-x\right)=\frac{61}{90}+\frac{30x}{90}\)
=> \(\frac{11}{5}-\frac{7}{24}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3}{8}x=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{3x}{8}=\frac{61+30x}{90}\)
=> \(\frac{229}{120}+\frac{45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{229+45x}{120}=\frac{61+30x}{90}\)
=> \(\frac{3\left(229+45x\right)}{360}=\frac{4\left(61+30x\right)}{360}\)
=> \(3\left(229+45x\right)=4\left(61+30x\right)\)
=> \(687+135x=244+120x\)
=> \(687+135x-244-120x=0\)
=> \(\left(687-244\right)+\left(135x-120x\right)=0\)
=> \(443+15x=0\)
=> \(15x=-443\Rightarrow x=-\frac{443}{15}\)
Vậy x = -443/15
a: ĐKXĐ: \(x\notin\left\{4;-4\right\}\)
\(\dfrac{7}{4x+16}=\dfrac{7}{4\left(x+4\right)}=\dfrac{7\left(x-4\right)}{4\left(x+4\right)\left(x-4\right)}\)
\(\dfrac{11}{x^2-16}=\dfrac{11\cdot4}{4\left(x^2-16\right)}=\dfrac{44}{4\left(x-4\right)\left(x+4\right)}\)
b: \(\dfrac{6}{x\left(x+3\right)^2};\dfrac{x-3}{2x\left(x+3\right)^2}\)
ĐKXĐ: \(x\notin\left\{0;-3\right\}\)
\(\dfrac{6}{x\left(x+3\right)^2}=\dfrac{6\cdot2}{2x\left(x+3\right)^2}=\dfrac{12}{2x\left(x+3\right)^2}\)
\(\dfrac{x-3}{2x\left(x+3\right)^2}=\dfrac{x-3}{2x\left(x+3\right)^2}\)
c: \(\dfrac{-6}{1-x};\dfrac{3x}{x^2+x+1};\dfrac{x^2-3x+5}{x^3-1}\)
ĐKXĐ: \(x\ne1\)
\(-\dfrac{6}{1-x}=\dfrac{6}{x-1}=\dfrac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{6x^2+6x+6}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{3x}{x^2+x+1}=\dfrac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{x^2-3x+5}{x^3-1}=\dfrac{x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
d: \(\dfrac{17}{5x};\dfrac{24}{x-2y};\dfrac{x-y}{8y^2-2x^2}\)
ĐKXĐ: \(x\ne0;x\ne\pm2y\)
\(\dfrac{17}{5x}=\dfrac{17\cdot2\left(x-2y\right)\left(x+2y\right)}{5x\cdot2\cdot\left(x-2y\right)\left(x+2y\right)}=\dfrac{34\left(x^2-4y^2\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{24}{x-2y}=\dfrac{24\cdot10x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{240x\left(x+2y\right)}{10x\left(x-2y\right)\left(x+2y\right)}\)
\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{-\left(x-y\right)}{2x^2-8y^2}=\dfrac{-\left(x-y\right)}{2\left(x-2y\right)\left(x+2y\right)}\)
\(=\dfrac{-5x\left(x-y\right)}{10x\left(x-2y\right)\left(x+2y\right)}=\dfrac{-5x^2+5xy}{10x\left(x-2y\right)\left(x+2y\right)}\)
1: \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>23x+61=2x+61
hay x=0
2: \(\dfrac{6}{x-5}+\dfrac{x+2}{x-8}=\dfrac{18}{\left(x-5\right)\left(8-x\right)}-1\)
\(\Leftrightarrow6x-48+x^2-3x-10=-18-x^2+13x-40\)
\(\Leftrightarrow x^2+3x-58+x^2-13x+58=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0
c: \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
\(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)
\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)
\(\Leftrightarrow x^2=0\)
hay x=0
1) (x - 35) - 120 = 0
x - 35 = 120
x = 120 + 35
x = 155
2) 310 - (118 - x) = 217
118 - x = 310 - 217
118 - x = 93
x = 118 - 93
x = 25
3) 156 - (x + 61) = 82
x + 61 = 156 - 82
x + 61 = 74
x = 74 - 61
x = 13
4) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305 = 407
5) 100 - 7 - (x - 5) = 58
x - 5 = 93 - 58
x - 5 = 35
x = 35 + 5 = 40
6) 12(x - 1) : 3 = 43 + 23
4(x - 1) = 72
x - 1 = 18
x = 18 + 1 = 19
7) 24 + 5x = 75 : 73
24 + 5x = 49
5x = 25
x = 25 : 5 = 5
8) 5(x - 1) : 3 = 43 + 23
\(\dfrac{5}{3}\left(x-1\right)=72\)
x - 1 = \(\dfrac{216}{5}\)
x = 221/5
9) 5(x - 4)2 - 7 = 13
5(x - 4)2 = 20
(x - 4)2 = 4
\(\Rightarrow\left[{}\begin{matrix}x-4=2\\x-4=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
10) (x + 1) + (x + 2) + ... + (x + 30) = 795
=> (x + x + x + ... + x) + (1 + 2 + 3 +...+ 30) = 795 (1)
Đặt A = 1 + 2 + 3 +...+ 30
Số số hạng trong A là: (30 - 1) : 1 + 1 = 30 (số)
Tổng A bằng : (30 + 1).30 : 2 =465
Thay A = 465 vào (1) , ta được:
30x + 465 = 795
=> 30x =330
=> x =11
1: =>x-35=120
=>x=120+35=155
2: =>118-x=310-217=93
=>x=118-93=25
3: =>x+61=156-82=74
=>x=74-61=13
4: =>x-305=814-712=102
=>x=102+305=407
5: =>93-(x-5)=58
=>x-5=35
=>x=40
6: =>4(x-1)=64+8=72
=>x-1=18
=>x=19
7: =>5x+24=49
=>5x=25
=>x=5
8: =>5(x-1):3=4^3+2^3=64+8=72
=>5(x-1)=216
=>x-1=216/5
=>x=221/5
1
\(\left(x-2\right):2.3=6\)
\(\Leftrightarrow\left(x-2\right):2=2\)
\(\Leftrightarrow\left(x-2\right)=4\)
\(\Leftrightarrow x=4+2=6\)
c) ta có
\(\left[\left(2x+1\right)+1\right]m:2=625\)
\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)
\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)
\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)
\(\Leftrightarrow\left(2x+1\right)^2=1250\)
...
2
\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)