Xác định các hệ số a,b để đa thức
A=x^3 +5x +ax +b chia cho x-2 dư 3 và chia x+2 dư -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=2x^2+ax+5⋮x-3\left(dư5\right)\)
Ta có \(x-3=0\Leftrightarrow x=3\)
\(\Leftrightarrow x-3\) là nghiệm của \(f\left(x\right)-5\)
\(\Leftrightarrow2.3^2+a3+5-5=0\Leftrightarrow3a+18=0\Leftrightarrow a=-6\)
gọi thưong trong phép chia trên là Q(x)
theo bài ra ta có
5x^3+2x^2+ax+b=(x^2+5).Q(x)+1 với mọi x (*)
thay x^2+5=0 vào (*) ta có
5x^3+2x^2+ax+b=1 (1)
mặt khác vì x^2+5=0
<=>5x(x^2+5)+2(x^2+5)=5x^3+2x^2+25x+10=0
<=>5x^3+2x^2+25x+11=1 (2)
từ (1) và (2)
<=>ax+b=25x+11
<=>a=25
b=11
vậy a=25 b=11 thì 5x^3+2x^2+ax+b chia cho x^2+5 dư 1
\(f\left(x\right)=ax^3+bx+c\)
\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)
\(\dfrac{x^3+5x+ax+b}{x-2}\)
\(=\dfrac{x^3-2x^2+2x^2-4x+9x-18+\left(a+18\right)+b}{x-2}\)
=>a+b+18=3
\(\dfrac{x^3+5x+ax+b}{x+2}\)
\(=\dfrac{x^3+2x^2-2x^2-4x+9x+18+\left(a-18\right)+b}{x+2}\)
=>a+b-18=-5
=>\(\left(a,b\right)\in\varnothing\)