K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Gọi 3 số đó lần lượt là a+1,a+2,a+3. Theo đề bài,ta cần chứng minh:

 \(\left(a+1+a+2+a+3\right)^3⋮9\) hay \(\left(3a+6\right)^3⋮9\)

Ta có: \(\left(3a+6\right)^3=\left(3a+6\right)\left(9a^2-180a+36\right)\) (Hằng đẳng thức đáng nhớ)

\(=9\left(3a+6\right)\left(a^2-20a+4\right)⋮9^{\left(đpcm\right)}\)

Quá đơn giản!

18 tháng 8 2019

Ba số nguyên liên tiếp là n, n + 1, n + 2 , ta phải c/m :

\(A=n^3+(n+1)^3+(n+2)^3⋮9\)

Ta có : \(A=n^3+(n+1)^3+(n+2)^3=3n^3+9n^2+15n+9\)

\(=3n^3-3n+18n+9n^2+9=3n(n-1)(n+1)+18n+9+9n^2\)

n, n - 1, n + 1 là ba số nguyên liên tiếp,trong đó có một số chia hết cho 3

Vậy : \(B=3n(n-1)(n+1)⋮9\)

\(C=18n+9n^2+9⋮9\)

=> \(A=B+C\)mà \(\hept{\begin{cases}B⋮9\\C⋮9\end{cases}}\Rightarrow A⋮9\)

AH
Akai Haruma
Giáo viên
26 tháng 6

Lời giải:

Gọi 3 số tự nhiên liên tiếp là $a,a+1, a+2$

Tổng lập phương của 3 số tự nhiên liên tiếp:

$a^3+(a+1)^3+(a+2)^3=3a^3+9a^2+15a+9$

$=3(a^3+3a^2+5a+3)$

$=3(a+1)(a^2+2a+3)$

Nếu $a$ chia hết cho $3$ thì $a^2+2a+3\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Nếu $a$ chia $3$ dư $1$

$\Rightarrow a+2\vdots 3\Rightarrow a(a+2)\vdots 3$

$\Rightarrow a^2+2a+3=a(a+2)+3\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Nếu $a$ chia $3$ dư $2$ thì $a+1\vdots 3$

$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$

Từ các TH trên suy ra $a^3+(a+1)^3+(a+2)^3=3(a+1)(a^2+2a+3)\vdots 9$ với mọi $a$

 

 

vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

9 tháng 8 2015

1) Gọi 2 số lẻ đó là a và b.

Ta có:

\(a^3-b^3\) chia hết cho 8 

=>  \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8

=> \(\left(a-b\right)\) chia hết cho 8    (đpcm)

10 tháng 10 2016

8 k minh

24 tháng 11 2019

mình chưa hiểu đề lắm 

sao lại lập phương 3 số tự nhiên liên tiếp

gọi 3 số tự nhiên liên tiếp là a-1;a;a+1

ta có

\(\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)

\(=3a^3+6a=3a^3-3a+9a=3a\left(a^2-1\right)+9a=3\left(a-1\right)a\left(a+1\right)+9a\)

vì tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

\(\Rightarrow3\left(a-1\right)a\left(a+1\right)⋮9\)

mà \(9a⋮9\)

vậy lập phương 3 số tự nhiên liên tiếp chia hết cho 9

17 tháng 11 2022

Ba số liên tiếp lần lượt là 3k;3k+1;3k+2

A=(3k)^3+(3k+1)^3+(3k+2)^3

=27k^3+(3k+1+3k+2)(9k^2+6k+1-9k^2-6k-3k-2+9k^2+12k+4)

=27k^3+(9k+3)(9k^2+9k+3)

=9[3k^3+(3k+1)(3k^2+3k+1] chia hết cho 9

25 tháng 6 2015

 Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= 3(a - 1)a(a + 1) + 9a 
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
==>3(a - 1)a(a + 1) + 9a 

25 tháng 6 2015

Oggy    copy