A=1+3^2+3^4+3^6+..........+3^2004+3^2006
Chứng minh rằng Achia cho 13 dư 10
(nhớ ghi cách trình bày)
Giúp mình với các bạn ơi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số đó là a :
a chia 3 du 2
a chia 4 du 3
a chia 5 du 4
a chia 7 du 6
=> a+1 chia het (3;4;5;7)
vì a nhỏ nhất nên a+1 cũng nhỏ nhất => a+1la BCNN ( 3;4;5;7)
=> a+1 = 70
=> a= 69
vay so phai tim do la 69
b) S=32+34+...+3998+31000
S=(32+34)+[(36+38+310)+(312+314+316)....+(3996+3998+31000)]
S= 90+ [36. 91+312.6+...+3996. 91]
Vì 91 chia hết cho 7 nên: 36. 91+312.6+...+3996. 91 cũng chia hết cho 9
Mà 90 chia 7 dư 6 nên suy ra S cũng chia 7 dư 6
Vậy S chia 7 dư 6
Nếu đúng k cho mk nha
Ta có: \(S=\left(5-\frac{2}{3}+\frac{3}{2}\right)-\left(7-\frac{5}{4}-\frac{1}{2}\right)-\left(1-\frac{4}{3}+\frac{2}{5}\right).\)
\(\Rightarrow S=\left(\frac{13}{3}+\frac{3}{2}\right)-\left(\frac{23}{4}-\frac{1}{2}\right)-\left(\frac{-1}{3}+\frac{2}{5}\right)\)
\(\Rightarrow S=\frac{35}{6}-\frac{21}{4}-\frac{1}{15}\)
\(\Rightarrow S=\frac{7}{12}-\frac{1}{15}=\frac{31}{60}\)
Vậy \(S=\frac{31}{60}\)
1) \(5^1+5^2+5^3+...+5^{2003}+5^{2004}=\) \(\left(5^1+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{2001}+5^{2004}\right)\)
\(=5\left(1+5^3\right)+5^2\left(1+5^3\right)+5^3\left(1+5^3\right)+...+5^{2001}\left(1+5^3\right)\)
\(=\left(1+5^3\right).\left(5+5^2+5^3+...+5^{2001}\right)\)
\(=126.\left(5+5^2+5^3+...+5^{2001}\right)⋮126\) \(\left(đpcm\right)\)
ấy nhầm, phải là 3^4 x 91 nhưng nó vẫn thế
Số số hạng của A là:
(2006 - 0) : 2 + 1 = 1004 (số)
Nếu ta nhóm 3 số 1 ở A thì có số nhóm là:
1004 : 3 = 334 (dư 2)
Ta có:
A = (1 + 3^2) + (3^4 + 3^6 + 3^8) +...+ (3^2002 + 3^2004 + 3^2006)
A = (1 + 3^2) + 3^4(1 + 3^2 + 3^4) +...+ 3^2002(1 + 3^2 + 3^4)
A = 10 + 3^4.13 +...+ 3^2002.13
A = 10 + 13(3^4 +...+ 3^2002)
Vì 13 chia hết cho 13 nên 13(3^4 +...+ 3^2002) chia hết cho 13, mà 10 chia 13 dư 10 nên 10 + 13(3^4 +...+ 3^2002) chia 13 dư 10 hay A chia 13 dư 10 (ĐPCM)