\(\sqrt{x+27}\)=3\(\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)^2\)
\(=27+10\sqrt{2}+27-10\sqrt{2}-2\sqrt{\left(27+10\sqrt{2}\right)\left(27-10\sqrt{2}\right)}\)
\(=54-2\sqrt{529}=8\)
\(\Rightarrow\) \(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}=\sqrt{8}=2\sqrt{2}\)
Xét tử số
\(\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}\)
\(=\left(\sqrt{27+10\sqrt{2}}.\sqrt{27-10\sqrt{2}}\right)\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23\left(\sqrt{27+10\sqrt{2}}-\sqrt{27-10\sqrt{2}}\right)\)
\(=23.2\sqrt{2}=46\sqrt{2}\)
Lại có \(\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2\)
\(=\sqrt{13}-3+\sqrt{13}+3+2\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}+3\right)}\)
\(=2\sqrt{13}+2\sqrt{4}=2\sqrt{13}+4\)
ta bình phương mẫu số
\(\left(\frac{\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}}{\sqrt{\sqrt{13}+2}}\right)^2=\frac{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right)^2}{\sqrt{13}+2}\)
\(=\frac{2\sqrt{13}+4}{\sqrt{13}+2}=2\)
Vậy mẫu \(=\sqrt{2}\)
Vậy \(x=\frac{46\sqrt{2}}{\sqrt{2}}=46\) thay vào ta đc A = 92880
Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)
\(^{Q^3}\)= 3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))
\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)
\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)
\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)
\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)
\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)
\(Q\)( \(Q^2\)- \(\sqrt[3]{243-x}\)) =6
\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)
Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\); \(Q^2\)- \(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)
Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....
\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8
Suy ra x=241 hoặc x=245
Vậy......
Không biết mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
\(x=\frac{\left(5+\sqrt{2}\right)^2\sqrt{\left(5-\sqrt{2}\right)^2}-\left(5-\sqrt{2}\right)^2\sqrt{\left(5+\sqrt{2}\right)^2}}{\frac{\sqrt{\left(\sqrt{13}-3\right)\left(\sqrt{13}-2\right)}+\sqrt{\left(\sqrt{13}+3\right)\left(\sqrt{13}-2\right)}}{\sqrt{13-4}}}\)
\(=\frac{\left(5+\sqrt{2}\right)\left(5+\sqrt{2}\right)\left(5-\sqrt{2}\right)-\left(5-\sqrt{2}\right)\left(5-\sqrt{2}\right)\left(5+\sqrt{2}\right)}{\frac{\sqrt{19-5\sqrt{13}}+\sqrt{7+\sqrt{13}}}{3}}\)
\(=\frac{69\left(5+\sqrt{2}-5+\sqrt{2}\right)}{\frac{1}{\sqrt{2}}\left(\sqrt{38-10\sqrt{13}}+\sqrt{14+2\sqrt{13}}\right)}=\frac{276}{\sqrt{\left(5-\sqrt{13}\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}}\)
\(=\frac{276}{5-\sqrt{13}+\sqrt{13}+1}=46\)
\(\Rightarrow A=...\)
đâu cần lập đặt 2 ẩn a;b là 2 cái căn 3 đó xong đưa về hệ phương trình là được mà đăng lên hỏi chơi thôi
`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`
`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`
`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`
`=8-5\sqrt{3}`
_______________________________________
`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}` `ĐK: x,y > 0`
`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`
`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`
`=-2\sqrt{y}`
Ý bạn có phải là:
\(\sqrt{x+27}=\sqrt[3]{3}\)
chắc thế đó bn