Giúp tớ với
Tính các tổng sau:
a) 1 + 2 + 3 + … + 48
b) 2 + 4 + 6 + …+ 212
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Tổng là:
(-19+19)+(-18+18)+...+20=20
b: Tổng là:
-18+(-17+17)+...+0=-18
a) \(1+2+3+4+...+n\)
\(=\left(n+1\right)\left[\left(n-1\right):1+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right):2\)
\(=n\left(n+1\right):2\)
\(=\dfrac{n\left(n+1\right)}{2}\)
b) \(2+4+6+..+2n\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
c) \(1+3+5+...+\left(2n+1\right)\)
\(=\left[\left(2n+1\right)+1\right]\left\{\left[\left(2n-1\right)-1\right]:2+1\right\}:2\)
\(=\left(2n+1+1\right)\left[\left(2n-1-1\right):2+1\right]:2\)
\(=\left(2n+2\right)\left[\left(2n-2\right):2+1\right]:2\)
\(=2\left(n+1\right)\left[2\left(n-1\right):2+1\right]:2\)
\(=\left(n+1\right)\left(n-1+1\right)\)
\(=n\left(n+1\right)\)
d) \(1+4+7+10+...+2005\)
\(=\left(2005+1\right)\left[\left(2005-1\right):3+1\right]:2\)
\(=2006\cdot\left(2004:3+1\right):2\)
\(=2006\cdot\left(668+1\right):2\)
\(=1003\cdot669\)
\(=671007\)
e) \(2+5+8+...+2006\)
\(=\left(2006+2\right)\left[\left(2006-2\right):3+1\right]:2\)
\(=2008\cdot\left(2004:3+1\right):2\)
\(=1004\cdot\left(668+1\right)\)
\(=1004\cdot669\)
\(=671676\)
g) \(1+5+9+...+2001\)
\(=\left(2001+1\right)\left[\left(2001-1\right):4+1\right]:2\)
\(=2002\cdot\left(2000:4+1\right):2\)
\(=1001\cdot\left(500+1\right)\)
\(=1001\cdot501\)
\(=501501\)
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.
Bài 1:
A= 623,5 + 148,9 + 506,7 + 217,3
=1496,4
B= 543,7 + 208,5 + 127,9 + 616,3
=1316,4
mà 1496,4>1316,4
=>A>B
Bài 2:
trung bình cộng của 25,42 ; 17,29 và 20,29 là:
(25,42 + 17,29 + 20,29) : 3 = 21
Đáp số:......
Bài 3:
436,54 + 85,08 = 521,62
Bài 1:
câu a: 4\(\dfrac{4}{9}\) : 2\(\dfrac{2}{3}\) + 3\(\dfrac{1}{6}\)
= \(\dfrac{40}{9}\) : \(\dfrac{8}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{5}{3}\) + \(\dfrac{19}{6}\)
= \(\dfrac{10}{6}\) + \(\dfrac{19}{6}\)
= \(\dfrac{29}{6}\)
b, (15,25 + 3,75) \(\times\) 4 + ( 20,71 + 5,29)\(\times\) 5
= 19 \(\times\) 4 + 26 \(\times\) 5
= 76 + 130
= 206
c, \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{3}\) - \(\dfrac{4}{5}\) \(\times\) \(\dfrac{1}{4}\)
= \(\dfrac{2}{5}\) + \(\dfrac{4}{15}\) - \(\dfrac{1}{5}\)
= \(\dfrac{6}{15}\) + \(\dfrac{4}{15}\) - \(\dfrac{3}{15}\)
= \(\dfrac{7}{15}\)
d, 1\(\dfrac{5}{7}\) + 7\(\dfrac{3}{6}\) + 2\(\dfrac{2}{7}\) - 4\(\dfrac{3}{6}\)
= (1 + 2 + \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\)) + ( 7 + \(\dfrac{3}{6}\) - 4 - \(\dfrac{3}{6}\))
= 3 + 1 + 3
= 7
S=1 + 2 - 3 + 4 + 5 - 6 + ..... + 211 + 212 - 213
S= 1 + (-1) + 4 (-1) + .....+ 211 + (-1)
Ta có : Số số tự nhiên là ;
( 211 - 1): 3 +1= 71 ( số)
Tổng số tự nhiên là :
( 211 + 1) x 71 :2 = 7526
(Theo bài ra lần đầu có 213 số vì cứ 3 số thì có 2 số có hiệu là số nguyên Âm )
Ta có ; 213 : 3 x2 = 142(Số)
Số số ( -1 ) là :
142 - 71 = 71 ( số )
Vậy S = [( -1)x71]+ 7526 = 7597
Vậy S = 7597
mình chắc chắn 100% là đúng
\(A=1+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)
\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)
A = 1 + 22 + 23 + ..... + 22021 + 22022
2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)
2A = 2 + 23 + 24 + ..... + 22022 + 22023
2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )
Thấy sai sai sao í -))
a) 1 + 2 + 3 + ... + 48
Dãy có số số hạng là:
(48 - 1) : 1 + 1 = 48 (số hạng)
Tổng của dãy số là:
(48 + 1) x 48 : 2 = 1176
Đáp số: 1176
b) 2 + 4 + 6 + ... + 212
Dãy có số số hạng là:
(212 - 2) : 2 + 1 = 106 (số hạng)
Tổng của dãy số đó là:
(212 + 2) x 106 : 2 = 11 342
Đáp số: 11 342
Học tốt;-;
a) 1 + 2 + 3 + ... + 48
= ( 48 + 1 ) . 48 : 2
= 1176
b) 2 + 4 + 6 + ... + 212
= ( 212 + 2 ) . 106 : 2
= 11 342