K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2018

Ta có:

A=2+22+23+...+2120

A=(2+22+23+24+25)+...+(2116+2117+2118+2119+2120)

A=2.(1+2+22+23+24)+...+2116.(1+2+22+23+24)

A=2.63+...+2116.63

A=63.(2+...+2116)

A=21.3.(2+...+2116)\(⋮\)21

Vậy A chia hết cho 21

27 tháng 10 2018

\(A=2^1+2^2+2^3+2^4+....+2^{119}+2^{120}\)

\(=\left(2^1+2^2+2^3+2^4+2^5+2^6\right)+.....+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+.....+2^{115}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(=2.63+....+2^{115}.63\)

\(=63\left(2+....+2^{115}\right)\)

\(=3.21.\left(2+...+2^{115}\right)\)

\(\Rightarrow A⋮21\)

4 tháng 1 2017

Mình chỉ làm được ý 3 thôi: 

4 tháng 1 2017

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

1 tháng 8 2023

Bài 1:

\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)

Bài 2:

\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)

1 tháng 8 2023

Bài 1 :

\(2^{49}=\left(2^7\right)^7=128^7\)

\(5^{21}=\left(5^3\right)^7=125^7\)

mà \(125^7< 128^7\)

\(\Rightarrow2^{49}>5^{21}\)

Bài 2 :

a) \(S=1+3+3^2+3^3+...3^{99}\)

\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)

\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)

\(\Rightarrow dpcm\)

b) \(S=1+4+4^2+4^3+...4^{62}\)

\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)

\(\Rightarrow S=21+4^3.21+...4^{60}.21\)

\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)

\(\Rightarrow dpcm\)

19 tháng 8 2023

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

3 tháng 2 2022

\(A=\left(3+3^2+3^3+3^4\right)+3^4\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(=120+3^4.120+...+3^{2008}.120=120\left(1+3^4+...+3^{2008}\right)⋮120\)

3 tháng 2 2022

\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)

\(A=\left(3+3^2+3^3+3^4\right)+...+3^{2008}\left(3+3^2+3^3+3^4\right)\)

\(A=\left(3+3^2+3^3+3^4\right)\left(1+3^4+...+3^{2008}\right)\)

\(A=120\left(1+3^4+...+3^{2008}\right)⋮120\)