K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

a)

Ta có:

n+4 chia hết cho n+1 =>n+1+3 chia hết cho n+1

Vì n+1 chia hết cho n+1=> 3 chia hết cho n+1

(từ đoạn này dễ rồi nha)

(tương tự với những câu còn lại)

13 tháng 1 2019

a,n=2

b,n=4

c,n=2

31 tháng 10 2021

\(a,\Rightarrow n-1+7⋮n-1\)

Mà \(n-1⋮n-1\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)=\left\{1;7\right\}\\ \Rightarrow n\in\left\{2;8\right\}\)

\(b,\Rightarrow3\left(n+1\right)+2⋮n+1\)

Mà \(3\left(n+1\right)⋮n+1\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2\right\}\\ \Rightarrow n=1\left(n\ne0\right)\)

14 tháng 8 2021

c) 13n⋮n-1

13n-13+13⋮n-1

13n-13⋮n-1 ⇒13⋮n-1

n-1∈Ư(13)

Ư(13)={1;-1;13;-13}

⇒n∈{2;0;14;-12}

 

14 tháng 8 2021

b) Bạn tham khảo nha: https://olm.vn/hoi-dap/detail/99050878351.html

21 tháng 11 2021

mình xin lỗi mình đánh máy sai câu hỏi như này

 A) n+7 chia hết cho n+2 ( với n khác 2 )

 B) 3n+1 chia hết cho 2n+3  

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

29 tháng 7 2017

1) => n thuộc Ư(4)={1,2,4}

Vậy n = {1,2,4}

2) \(\frac{6}{n+1}\)

=> n+1 thuộc Ư(6)={1,2,3,6}

Ta có bảng :

n+11236
n0125

Vậy n={0,1,2,5}

3) =>n thuộc Ư(8)={1,2,4,8}

Vậy n n={1,2,4,8}

4)\(\frac{n+3}{n}=\frac{n}{n}+\frac{3}{n}=1+\frac{3}{n}\)

=> n thuộc Ư(3)={1,3}

Vậy n = {1,3}

5) \(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}=1+\frac{5}{n+1}\)

=> n+1 thuộc Ư(5) = {1,5}

Ta có : n+1=1

n = 1-1

n=0

Và n+1=5

n=5-1

n=4 

Vậy n = 4

5 tháng 7 2016

a) n+2 chia hết cho n - 1

=> n-1 + 3 chia hết cho n -1

=> n - 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {2;0;4;-2}

b) n +4 chia hết cho n + 1 

=> n + 1 + 3 chia hết cho n + 1

=> n + 1 thuộc Ư (3) = {1;-1;3;-3}

=> n = {0;-2;2;-4}

c) 2n + 7 chia hết cho n + 1

=> n + 1 + n + 1 + 5 chia hết cho n + 1

=> n + 1 thuộc Ư(5)

=> n + 1 = {1;-1;5;-5}

=> n = {0;-2;4;-6}

d) 2n + 1 chia hết cho n - 3

=> n - 3 + n - 3 - 5 chia hết cho n - 3

=> n - 3 thuộc Ư(-5) = {1;-1;5;-5}

=> n  = {4;2;8;-2}

5 tháng 7 2016

a) Vì n+2 chia hết cho n-1 => (n-1)+3 chia hết cho n-1

Vì \(n-1⋮n-1\Rightarrow3⋮n-1\Rightarrow n-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n-11-13-3
n204-2

=> n={2;0;4;-2}

b) Vì n+4 chia hết cho n+1 => (n+1)+3 chia hết cho n+1

Mà \(\left(n+1\right)⋮n+1\Rightarrow3⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

Ta có bảng sau:

n+113-1-3
n02-2-4

=> n={0;2;-2;-4}

c) Vì 2n+7 chia hết cho n+1 => 2(n+1)+5 chia hết cho n+1

Mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮\left(n+1\right)\Rightarrow\left(n+1\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)

Ta có bảng sau:

n+115-1-5
n04-2-6

=> n={0;4;-2;-6}

d) Vì 2n+1 chia hết cho n-3 => 2(n-3)+7 chia hết cho n-3

Mà \(2\left(n-3\right)⋮\left(n-3\right)\Rightarrow7⋮\left(n-3\right)\Rightarrow\left(n-3\right)\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Ta có bảng sau:

n-317-1-7
n4102-4

=> n={4;10;2;-4}

Gì mak zài zữ zậy bạn ucche

25 tháng 12 2020

Ta có: n+3 chia hết cho n-1

mà: n-1 chia hết cho n-1

suy ra:[(n+3)-(n-1)]chia hết cho n-1

              (n+3-n+1)chia hết cho n-1

                        4    chia hết cho n-1

                  suy ra n-1 thuộc Ư(4)

           Ư(4)={1;2;4}

suy ra n-1 thuộc {1;2;4}

Ta có bảng sau:

n-1          1             2           4

n              2             3           5

    Vậy n=2 hoặc n=3 hoặc n=5 

 

25 tháng 12 2020

cảm ơn bạn nhaok

26 tháng 10 2018

c, 2n+7 chia hết cho n+1

=> 2n+7-2(n+1) chia hết cho n+1

=> 5 CHIA HẾT CHO n+1

=> n E { -2;0;4;-6}