K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

26 tháng 10 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)

\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)

Từ (1) và (2) => đpcm

b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)

\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)

Từ (1) và (2) => đpcm

10 tháng 12 2019

Với \(a,b,c\ne0\); \(a+b+c\ne0\) , ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c\left(ab+bc+ca\right)=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+abc+bc^2+c^2a=abc\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+bc^2+c^2a=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Không mất tính tổng quát, ta lấy \(a=-b\), ta có:

\(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{\left(-b\right)^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}\)

\(=\frac{-1}{b^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\) (1)

Ta có:\(\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{\left(-b\right)^{2005}+b^{2005}+c^{2005}}\)

\(=\frac{1}{-b^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\) (2)

Từ (1), (2), suy ra \(\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{a^{2005}+b^{2005}+c^{2005}}\)

10 tháng 12 2019

Cái chỗ không mất tính tổng quát đấy, là do a, b, c bình đẳng nhau.

27 tháng 6 2018

\(a^2=b+4010\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4010\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2+4010\)

\(\Rightarrow2xy+2yz+2xz=4010\Rightarrow xy+yz+xz=2005\)

\(x\sqrt{\frac{\left(2015+y^2\right)\left(2005+z^2\right)}{\left(2005+x^2\right)}}=x\sqrt{\frac{\left(xz+yz+xy+y^2\right)\left(xy+xz+yz+z^2\right)}{\left(xy+yz+x^2+xz\right)}}\)

\(=x\sqrt{\frac{\left(z\left(x+y\right)+y\left(x+y\right)\right)\left(x\left(y+z\right)+z\left(y+z\right)\right)}{\left(y\left(x+z\right)+x\left(x+z\right)\right)}}=x\sqrt{\frac{\left(y+z\right)^2\left(x+y\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)

\(=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)=xy+xz\)

tương tự : \(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=xy+yz;z\sqrt{\frac{\left(2005+x^2\right)\left(2005+y^2\right)}{2015+z^2}}=xz+yz\)

\(\Rightarrow M=xy+xz+xy+yz+xz+yz=2\left(xy+yz+xz\right)=2\cdot2005=4010\)