K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

`P=1/(x^2+y^2)+1/(xy)+4xy`

`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`

Áp dụng bunhia dạng phân thức

`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`

Mà `(x+y)^2<=1`

`=>1/(x^2+y^2)+1/(2xy)>=4`

Áp dụng cosi:

`4xy+1/(4xy)>=2`

`4xy<=(x+y)^2<=1`

`=>1/(4xy)>=1`

`=>P>=4+2+1=7`

Dấu "=" `<=>x=y=1/2`

24 tháng 5 2021

Cảm ơn ạ !

2 tháng 11 2018

\(A=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{4xy}+4xy+\dfrac{5}{4xy}\)Áp dụng BĐT \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\left(a,b>0\right)\)(bn tự cm BĐT này) và BĐT cauchy ta có:

\(A\ge\dfrac{4}{x^2+2xy+y^2}+2\sqrt{\dfrac{1}{4xy}.4xy}+\dfrac{5}{\left(x+y\right)^2}\)=

\(=\dfrac{4}{\left(x+y\right)^2}+2+\dfrac{5}{\left(x+y\right)^2}\ge4+2+5=11\)(vì x+y\(\le\)1)

Vậy Min A = 11 \(\Leftrightarrow x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Câu 1:

Áp dụng BĐT Cô-si:

\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)

\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)

Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)

Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)

AH
Akai Haruma
Giáo viên
11 tháng 4 2018

Câu 2:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)

\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)

(do \(x+y\leq 1\) )

Áp dụng BĐT Cô-si:

\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)

\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)

\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)

Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)

Vậy \(B_{\min}=11\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

3 tháng 7 2021

Áp dụng BĐT Cauchy-Schwarz dạng Engel có:

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)

Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)

3 tháng 7 2021

áp dụng BDT AM-GM

\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)

\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)

dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)

22 tháng 5 2015

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)

Do x,y\(\ge\)0

Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)

\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)

\(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)

 Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)

  Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)

                 mình đang còn suy nghĩ đây là bản nháp bạn xem thử

31 tháng 12 2017

Ta có : \(P=\dfrac{20}{x^2+y^2}+\dfrac{20}{2xy}+\dfrac{1}{xy}\)

Áp dụng BĐT C.B.S

\(\Rightarrow20\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge20.\dfrac{4}{\left(x+y\right)^2}\ge20\)

Áp dụng BĐT Cauchy

\(xy\le\dfrac{\left(x+y\right)^2}{4}=1\Rightarrow\dfrac{1}{xy}\ge1\)

Cộng hai BĐT trên lại \(\Rightarrow P\ge21\) => MinP=21 khi x=y=1

31 tháng 5 2017

Ta có :

\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)(1)

Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\)( "=" khi a=b ) , ta có :

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}\)

\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{2xy}>=\frac{4}{\left(x+y\right)^2}=\frac{4}{1^2}=4\)    (2)  

Lại có : \(\left(x-y\right)^2>=0\) ("=" khi x=y )

\(\Leftrightarrow x^2-2xy+y^2>=0\)

\(\Leftrightarrow x^2+y^2>=2xy\)

\(\Leftrightarrow x^2+y^2+2xy>=4xy\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow1>=4xy\)

\(\Leftrightarrow2xy< =\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2xy}>=2\)  (3)

Từ (1) , (2) và (3) , suy ra :  \(K>=4+2=6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x^2+y^2=2xy\\x=y\\x+y=1\end{cases}}\)

                             \(\Rightarrow x=y=\frac{1}{2}\)

        Vậy Min\(K=6\)khi \(x=y=\frac{1}{2}\)

NV
22 tháng 1 2022

\(x+y=xy\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=1\)

Đặt \(\left(\dfrac{1}{x};\dfrac{1}{y}\right)=\left(a;b\right)\Rightarrow a+b=1\) \(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\)

\(P=\dfrac{a^2}{1+a-a^2}+\dfrac{b^2}{1+b-b^2}\ge\dfrac{\left(a+b\right)^2}{2+a+b-\left(a^2+b^2\right)}=\dfrac{1}{3-\left(a^2+b^2\right)}\ge\dfrac{1}{3-\dfrac{1}{2}}=\dfrac{2}{5}\)

Dấu "=" xảy ra khi \(x=y=2\)