Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(P=\dfrac{4k^2-2k.3k+9k^2}{4k^2+2k.3k+9k^2}=\dfrac{13k^2-6k^2}{13k^2+6k^2}=\dfrac{7k^2}{19k^2}=\dfrac{7}{19}\)
\(S=\dfrac{x^2+y^2+2xy}{x^2+y^2}+\dfrac{x^2+y^2+2xy}{xy}\)
\(=1+\dfrac{2xy}{x^2+y^2}+2+\dfrac{x^2+y^2}{xy}\)
\(=3+\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}\)
\(\dfrac{2xy}{x^2+y^2}+\dfrac{x^2+y^2}{2xy}>=2\cdot\sqrt{\dfrac{2xy}{x^2+y^2}\cdot\dfrac{x^2+y^2}{2xy}}=2\)
Dấu = xảy ra khi \(\dfrac{x^2+y^2}{2xy}=\dfrac{2xy}{x^2+y^2}\)
=>x=y
x^2+y^2>=2xy
=>\(\dfrac{x^2+y^2}{2xy}>=1\)
Dấu = xảy ra khi x=y
=>S>=6
Dấu = xảy ra khi x=y
Áp dụng BĐT Cauchy-Schwarz dạng Engel có:
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x=y=\(\dfrac{1}{2}\)
áp dụng BDT AM-GM
\(=>x+y\ge2\sqrt{xy}=>1\ge2\sqrt{xy}=>\sqrt{xy}\le\dfrac{1}{2}=>xy\le\dfrac{1}{4}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\)
\(\ge\dfrac{4}{x^2+2xy+y^2}+\dfrac{1}{2.\dfrac{1}{4}}=\dfrac{4}{\left(x+y\right)^2}+2=4+2=6\)
dấu"=" xảy ra \(< =>x=y=\dfrac{1}{2}\)
Ta có bất đẳng thức phụ: \(xy+yz+xz\le x^2+y^2+z^2\)
\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\le3\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(P=\dfrac{1}{1+xy}+\dfrac{1}{1+xz}+\dfrac{1}{1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+xy+1+xz+1+yz}\ge\dfrac{\left(1+1+1\right)^2}{1+1+1+3}=\dfrac{9}{6}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=1\)
\(P=\dfrac{1}{x^2+y^2+z^2}+\dfrac{2023}{xy+yz+zx}\)
\(=\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}+\dfrac{2021}{xy+yz+zx}\)
\(\ge\dfrac{9}{\left(x+y+z\right)^2}+\dfrac{2021}{\dfrac{\left(x+y+z\right)^2}{3}}\)\(=9+\dfrac{2021}{\dfrac{1}{3}}=6072\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Ta có:
+) \(xy+yz+zx\le\dfrac{\left(x+y+z\right)^2}{3}\left(\text{Cô si}\right)\)
+) \(\dfrac{1}{x^2+y^2+z^2}+\dfrac{1}{xy+yz+zx}+\dfrac{1}{xy+yz+zx}\)
\(\ge\dfrac{9}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=\dfrac{9}{\left(x+y+z\right)^2}\left(\text{Svácxơ}\right)\)
\(A=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}>=2\sqrt{2}\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{6}+\sqrt{2}}{2}\\y=\dfrac{\sqrt{6}-\sqrt{2}}{2}\end{matrix}\right.\)
\(1,\) Áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\text{ và }\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Dấu \("="\Leftrightarrow x=y\)
\(A=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\\ A\ge\dfrac{1}{2}\left(1+\dfrac{1}{a}+\dfrac{1}{b}\right)^2+17\ge\dfrac{1}{2}\left(1+\dfrac{4}{a+b}\right)^2+17=\dfrac{25}{2}+17=\dfrac{59}{2}\\ \text{Dấu }"="\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{a}=b+\dfrac{1}{b}\\a+b=1\end{matrix}\right.\Leftrightarrow a=b=\dfrac{1}{2}\)
\(2,\text{Đặt }A=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(\dfrac{xy^2z}{xz}+\dfrac{xyz^2}{xy}+\dfrac{x^2yz}{yz}\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+2\left(x^2+y^2+z^2\right)\\ \Leftrightarrow A^2=\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}+6\)
Áp dụng Cosi: \(\dfrac{x^2y^2}{z^2}+\dfrac{y^2z^2}{x^2}\ge2y^2\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{y^2z^2}{x^2}+\dfrac{x^2z^2}{y^2}\ge2z^2\\\dfrac{x^2y^2}{z^2}+\dfrac{x^2z^2}{y^2}\ge2x^2\end{matrix}\right.\)
Cộng VTV \(\Leftrightarrow A^2\ge2\left(x^2+y^2+z^2\right)+6=12\\ \Leftrightarrow A\ge2\sqrt{3}\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(M=\dfrac{1}{x^{2}+y^{2}}+\dfrac{1}{xy} \\=(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy})+\dfrac{1}{2xy}\\ \)
\(\ge\dfrac{4}{\left(x+y\right)^2}+\dfrac{1}{2.\left(\dfrac{x+y}{2}\right)^2}=\dfrac{4}{1^2}+\dfrac{1}{2.\left(\dfrac{1}{2}\right)^2}=6\)
Dấu "=" xảy ra<=>x=y=0,5.
\(M=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{1}{2xy}\ge\dfrac{\left(1+1\right)^2}{x^2+y^2+2xy}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{2}}=6\)
\(\Rightarrow M_{min}=6\) khi \(x=y=\dfrac{1}{2}\)
Xét \(B=\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{\left(a+b\right)^2}\), ta có:
\(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\ge\dfrac{4}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}=\dfrac{4}{1^2}=4\)
\(\Rightarrow B\ge4\)
Ta có:
\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow1\ge4xy\)
\(\Leftrightarrow\dfrac{1}{2xy}\ge\dfrac{4xy}{2xy}=2\) (x,y>0)
Khi đó:
\(A=B+\dfrac{1}{2xy}\ge4+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(x=y=\dfrac{1}{2}\)
\(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\\ =\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{2}{4xy}\\ \overset{AM-GM}{\ge}\dfrac{4}{x^2+y^2+2xy}+\dfrac{2}{\left(x+y\right)^2}\\ =\dfrac{4}{\left(x+y\right)^2}+\dfrac{2}{\left(x+y\right)^2}=4+2=6\)
Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}x^2+y^2=2xy\\x=y\end{matrix}\right.\Leftrightarrow x=y\)
Vậy \(A_{Min}=6\) khi \(x=y\)
Ta có : \(P=\dfrac{20}{x^2+y^2}+\dfrac{20}{2xy}+\dfrac{1}{xy}\)
Áp dụng BĐT C.B.S
\(\Rightarrow20\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge20.\dfrac{4}{\left(x+y\right)^2}\ge20\)
Áp dụng BĐT Cauchy
\(xy\le\dfrac{\left(x+y\right)^2}{4}=1\Rightarrow\dfrac{1}{xy}\ge1\)
Cộng hai BĐT trên lại \(\Rightarrow P\ge21\) => MinP=21 khi x=y=1