tìm giá trị lớn nhất của biểu thức:
P=\(\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\)
trình bày đầy đủ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng 2 số là 150, tổng của 1/6 số này và 1/9 số kia = 18. Tìm 2 số đó
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)
Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1
Vậy MaxA = 4 <=> x = -1
a, \(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}\Rightarrow2A=\frac{30\left|x+1\right|+64}{6\left|x+1\right|+8}=5+\frac{24}{6\left|x+1\right|+8}=5+\frac{12}{3\left|x+1\right|+4}\)
Ta thấy \(\left|x+1\right|\ge0\) với mọi x
\(\Rightarrow3\left|x+1\right|\ge0\Rightarrow3\left|x+1\right|+4\ge4\Rightarrow0< \frac{12}{3\left|x+1\right|+4}\le3\)
\(\Rightarrow5< A\le8\)
Suy ra GTLN của A là 8 khi |x+1|=0 hay x=-1
VẬY GTLN của A là 8 khi x=-1
câu a thui còn câu b mk chưa có bít làm
bn k cho mk nha
Bạn Aquarius bài sai rùi
Bạn ấy ghi 2A=... mà chưa =>A=...
sao bạn kết luận hay thế?
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3}{2}\left(x^2+6x+9\right)=\frac{1}{3}\left(x^2-1\right)+2x\)
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3x^2+18x+27}{2}=\frac{x^2-1}{3}+2x\)
\(\Rightarrow8x^2-8x+2-9x^2-54x-81=2x^2-2+12x\)
\(\Rightarrow-3x^2-74x-77=0\)
\(\Delta=5476-4.\left(-77\right).\left(-3\right)=4552\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{4552}\)
\(\Rightarrow x=\frac{-74+\sqrt{4552}}{6};x=\frac{-74-\sqrt{4552}}{6}\)
\(\frac{\left(2x-1\right)^2}{3}-\frac{3.\left(x+3\right)^2}{2}=\frac{x^2-1}{3}+2x\)
Qui đồng lên là tìm được