K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

abcdeg=ab.10000+cd.100+eg=ab+ab.9999+cd+cd.99+eg=(ab+cd+Eg)+ab.9999+cd.99 

Vì \(\overline{cd}.99\)chia hết cho 11

\(\overline{ab}.9999\)chia hết cho 11

\(\overline{ab}+\overline{cd}+\overline{eg}\)không chia hết cho 11

Vậy nên \(\overline{abcdeg}\)không chia hết cho 11

19 tháng 4 2021

Ta có: abcdeg=10000ab+100+cd+eg

                      =(ab+cd+eg)(10000+101)

                              theo bài ra ta có ab+cd+eg chia hết cho 11=>(ab+cd+eg)(10000+101) chia hết cho 11 hay abcdeg chia hết cho 11(đpcm) 

                   Vậy với ab+cd+eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

                           

abcdeg = ab . 10000 + cd . 100 + eg

ab . 9999 + 1 . ab + cd . 99 + cd + eg 

ab . 11 . 909 + cd . 11 . 9 + ( ab + cd + eg )

= 11 . ( ab + 909 + cd . 9 ) + ( ab + cd + eg )

Vì 11 . ( ab . 909 + cd . 9 ) chia hết cho 11

            ab + cd + eg chia hết cho 11

Nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg cũng chia hết cho 11

5 tháng 1 2017

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

19 tháng 7 2015

 abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)

Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11

=> abcdeg chia hết cho 11 (đpcm)

11 tháng 1 2018

ab+cd+eg chia hết cho 11

Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11

=> 9999ab+99cd+ab+cd+eg chia hết cho 11

=> 10000ab+100cd+eg chia hết cho 11

=> ab0000+cd00+eg chia hết cho 11

=> abcdeg chia hết cho 11

=> ĐPCM

Tk mk nha

11 tháng 1 2018

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

Vậy...

6 tháng 11 2015

abcdeg = ab . 10000 + cd .100+ eg 

           = ab . 9999 + 1 . ab + cd . 99 + cd + eg 

           = ab . 11 . 909 + cd . 11 .9 + (ab + cd + eg)

           = 11 . (ab + 909 + cd . 9 ) + (ab + cd + eg)

Vì 11 . (ab . 909 + cd . 9) chia hết cho 11 

            ab + cd + eg chia hết cho 11 

nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11 

21 tháng 3 2017

bạn thiếu (ĐPCM)

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

13 tháng 3 2018

vào câu hỏi tương tự ă

13 tháng 3 2018

ta có :

\(\overline{abcdeg}=\overline{ab}\cdot10000+\overline{cd}\cdot100+\overline{eg}\)

\(=\overline{ab}\cdot9999+\overline{cd}\cdot99+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

          \(9999⋮11\Rightarrow\overline{ab}\cdot9999⋮11\)

          \(99⋮11\Rightarrow\overline{cd}\cdot99⋮11\)

          \(\overline{ab}+\overline{cd}+\overline{eg}⋮11\)

\(\Rightarrow\overline{abcdeg}⋮11\)

Dễ mà bạn

câu a í

Bạn tham khảo một số bài toán đi

2 tháng 2 2017

ab+cd+eg = 10a+b+d+10e+g 

=10(a+c+e)+b+d+g chia hết cho 11 thì

a+c+e chia hết 11

b+d+g chia hết 11