Cho các số dương x,y,z TM: x+y+z = 1
Tìm GTNN của A = \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Áp dụng BĐT Cô - si cho 3 bộ số không âm
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2\left(yz+1\right)^2\left(xz+1\right)^2}{x^2y^2z^2\left(yz+1\right)\left(xz+1\right)\left(xy+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
Xét \(3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{xz+1}{z}\right)}\)
\(=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)
Áp dụng BĐT Cô - si
\(\Rightarrow\left\{\begin{matrix}y+\frac{1}{x}\ge2\sqrt{\frac{y}{x}}\\z+\frac{1}{y}\ge2\sqrt{\frac{z}{y}}\\x+\frac{1}{z}\ge2\sqrt{\frac{x}{z}}\end{matrix}\right.\)
\(\Rightarrow\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)\ge8\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge3\sqrt[3]{8}\)
\(\Rightarrow3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\ge6\)
\(\Leftrightarrow3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\ge6\)
Mà \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(xz+1\right)}{xyz}}\)
\(\Rightarrow\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\ge6\)
Vậy GTNN của \(\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}=6\)
\(P^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.\left(\frac{xy.yz}{zx}+\frac{yz.zx}{xy}+\frac{zx.xy}{zy}\right)\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.2016\)
Áp dụng BĐT Cauchy:\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{z^2}.\frac{y^2z^2}{x^2}}=2y^2\)
\(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2\sqrt{\frac{y^2z^2}{x^2}.\frac{z^2x^2}{y^2}}=2z^2\)
\(\frac{z^2x^2}{y^2}+\frac{x^2y^2}{z^2}\ge2\sqrt{\frac{x^2z^2}{y^2}.\frac{x^2y^2}{z^2}}=2x^2\)
Cộng theo vế ta được:\(2\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)\ge2x^2+2y^2+2z^2=2.2016\)
\(\Rightarrow\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2016\)
\(\Rightarrow P^2\ge2016+2016.2=6048\Rightarrow P\ge\sqrt{6048}=12\sqrt{42}\)
Nên GTNN của P là \(12\sqrt{42}\) đạt được khi \(x=y=z=\sqrt{\frac{2016}{3}}=4\sqrt{42}\)
Theo bđt AM-GM :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{xy}{z}=\frac{yz}{x}\Leftrightarrow x=z\)
+ Tương tự ta cm đc :
\(\frac{yz}{x}+\frac{zx}{y}\ge2z\). Dấu "=" xảy ra <=> x = y
\(\frac{xy}{z}+\frac{xz}{y}\ge2x\). Dấu "=" xảy ra <=> y = z
Do đó : \(2P\ge2\left(x+y+z\right)\)
\(\Rightarrow P\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xzy^2}{xz}}=2y\) ; \(\frac{xy}{z}+\frac{xz}{y}\ge2x\); \(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
Cộng vế với vế:
\(2P\ge2\left(x+y+z\right)\Rightarrow P\ge x+y+z=1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z=\frac{1}{3}\)
Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)
Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)
Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)
Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1
Vậy minP=\(\frac{3}{2}\)khi x=y=z=1
Áp dụng BĐT cô si
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng vế với vế của ba BĐT :
=> \(A\ge x+y+z=1\)
Vậy ....