Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
\(P^2=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.\left(\frac{xy.yz}{zx}+\frac{yz.zx}{xy}+\frac{zx.xy}{zy}\right)\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2.2016\)
Áp dụng BĐT Cauchy:\(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}\ge2\sqrt{\frac{x^2y^2}{z^2}.\frac{y^2z^2}{x^2}}=2y^2\)
\(\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2\sqrt{\frac{y^2z^2}{x^2}.\frac{z^2x^2}{y^2}}=2z^2\)
\(\frac{z^2x^2}{y^2}+\frac{x^2y^2}{z^2}\ge2\sqrt{\frac{x^2z^2}{y^2}.\frac{x^2y^2}{z^2}}=2x^2\)
Cộng theo vế ta được:\(2\left(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\right)\ge2x^2+2y^2+2z^2=2.2016\)
\(\Rightarrow\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge2016\)
\(\Rightarrow P^2\ge2016+2016.2=6048\Rightarrow P\ge\sqrt{6048}=12\sqrt{42}\)
Nên GTNN của P là \(12\sqrt{42}\) đạt được khi \(x=y=z=\sqrt{\frac{2016}{3}}=4\sqrt{42}\)
Theo bđt AM-GM :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2y\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{xy}{z}=\frac{yz}{x}\Leftrightarrow x=z\)
+ Tương tự ta cm đc :
\(\frac{yz}{x}+\frac{zx}{y}\ge2z\). Dấu "=" xảy ra <=> x = y
\(\frac{xy}{z}+\frac{xz}{y}\ge2x\). Dấu "=" xảy ra <=> y = z
Do đó : \(2P\ge2\left(x+y+z\right)\)
\(\Rightarrow P\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xzy^2}{xz}}=2y\) ; \(\frac{xy}{z}+\frac{xz}{y}\ge2x\); \(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
Cộng vế với vế:
\(2P\ge2\left(x+y+z\right)\Rightarrow P\ge x+y+z=1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z=\frac{1}{3}\)
Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)
\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)
Thiết lập tương tự và cộng lại:
\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)
\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)
Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)
\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)
Dấu "=" xảy ra khi \(x=y=z\)
Tìm GTNN
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)với x,y,z là các số dương và \(x^2+y^2 +z^2=1\)
Bạn dùng HĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) nha
Bài làm :
tự c/m bđt trên.
Áp dụng t đc \(A^2\ge3\left(y^2+x^2+z^2\right)\)
->\(A\ge\sqrt{3}\)
Dấu - xảy ra khi x=x=z và x^2+y^2+z^2=1=>x=y=z=....
Gút lắc
Áp dụng BĐT cô si
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng vế với vế của ba BĐT :
=> \(A\ge x+y+z=1\)
Vậy ....