Cho A = 3 + 33 + 35 + ... + 32015
Chứng minh A không chia hết cho 9 và A chia hết cho 70
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Chứng minh rằng :
a, 1033+ 8 chia hết cho 9 và chia hết cho 2
Vì 10 chia hết cho 2 và 8 chia hết cho 2
=> 1033 + 8 chia hết cho 2
b, 1033 +14 ko chia hết cho 3 và chỉ chia hết cho 2
a.
76 + 75 - 74 = 73 x (73 + 72 - 7) = 74 x 385 = 74 x 35 x 11
Vậy 76 + 75 - 74 chia chết cho 35
b.
165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x 33
Vậy 165 + 215 chia hết cho 33
c.
817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405
Vậy 817 - 279 - 913 chia hết cho 405
Chúc bạn học tốt ^^
a, Không có số nào thoả mãn
b, Bất kì số tự nhiên nào
c, 4 hoặc 7
d, Không có số nào thoả mãn
70.a,nếu n chẵn thì n+10 chẵn chia hết cho 2,nếu n lẻ thì n+15 chẵn chia hết cho 2(vì bất kì một số nào nhân với số chẵn đều ra số chẵn)
làm tương tự vậy là được thui
A=13!-11!=11!.(12.13-1)=11!.155=1.2.3.4.5.....11.155
vì trong tích có các thừa soos2,5,155 nên A chia hết cho 2,5,155
Vì n là số tự nhiên nên sảy ra 2 trường hợp
+ n là số chẵn thì n có dạng 2a
Thay n = 2a ta có : (n + 10) ( n + 15) = (2a + 10)(n + 15)
= 2(a + 5)(n + 15) chia hết cho 2
+ n là số lẻ thì n có dạng 2a + 1
Thay n = 2a + 1 ta có : (n + 10)(n + 15) = (2a + 11)(2a + 16)
= 2(2a + 11)(a + 8) chia hết cho 2
Vậy với mọi số tự nhiên n thì (n + 10)(n + 15) chia hết cho 2 (đpcm)
A=3+3 mũ 3+ 3 mũ 5+...+3 mũ 2015
Vì 3 không chia hết cho 9 => A không chia hết cho 9(điều phải chứng minh)